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Abstract

Admissible non-supercuspidal representations of GSp(4, F), where F is a local field
of characteristic zero with an odd-ordered residue field I';, have finite dimensional
spaces of fixed vectors under the action of principal congruence subgroups. We can say
precisely what these dimensions are for nearly all local fields and principal congruence
subgroups of level p by understanding the non—cuspidal representation theory of the
finite group GSp(4,F,). The conjugacy classes and the list of irreducible characters
of this group are given. Genericity and cuspidality of the irreducible characters are

also determined.
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Chapter 1

Introduction

Representations of linear groups over a finite or a local field F' are constructed from
cuspidal representations, as noted in [8] by Harish-Chandra, in a way analogous to
the construction of Eisenstein series from cusp forms. The representation theory of
these groups can be thought of as having two kinds of representations: cuspidal and
non—cuspidal.

For reductive algebraic groups over F', non—cuspidal representations are con-
structed from cuspidal representations by parabolic induction. One parabolically in-
duces a cuspidal representation defined on a parabolic subgroup and then decomposes
the induced representation into irreducible constituents. When all of the parabolic
subgroups and cuspidal representations of those subgroups have been exhausted, the
result is a list of every irreducible non—cuspidal representation of the group. The only
irreducible representations of the group remaining are those that cannot be obtained
through parabolic induction. These are the cuspidal representations.

Let G be a connected algebraic group over a finite field F. A maximal Zariski-
connected solvable algebraic subgroup of G is called a Borel subgroup of G. Let B, B’

be Borel subgroups. Then B’ = gBg~! for some g € G. A parabolic subgroup P



of G is a subgroup that contains the Borel subgroup (or one of its conjugates) as a
subgroup. A Levi subgroup M of P is a maximal reductive subgroup (determined up
to conjugacy) of P. The unipotent radical U of P is its maximal unipotent subgroup.

The group we are interested in is the general symplectic group GSp(4,F,) over
a finite field T, of odd characteristic. We look at cuspidal representations defined
on the Borel subgroup consisting of upper triangular matrices and two parabolic sub-
groups called the Siegel parabolic and the Klingen parabolic, which are each block
upper triangular. Parabolically inducing cuspidal representations of these three sub-
groups turns out to yield the complete collection of non—cuspidal representations of
GSp(4,F,). Character theory is used to determine the non—cuspidal representations
by decomposing parabolically induced cuspidal representations into irreducible con-
stituents.

Our first step is to find the list of conjugacy classes of GSp(4,F,). This list
is used to compute the classes of the Borel, the Siegel parabolic, and the Klingen
parabolic subgroups. The main tool we use for determining the conjugacy classes of
GSp(4,F,) is a paper of Wall [I5], which was also used to determine the conjugacy
classes of the symplectic group Sp(4,F,) in Srinivasan’s paper [14]. An isomorphism
between GSp(4, F,) modulo its center and a special orthogonal group is used to solve
the conjugacy class problem for GSp(4,F,). We then determine how the conjugacy
classes split in the Borel, the Siegel parabolic, and the Klingen parabolic subgroups.

All of the irreducible characters of the finite group GSp(4,F,) and their cuspi-
dality and genericity are determined. Cuspidality is determined by defining cuspidal
representations on the Borel, the Siegel parabolic, and the Klingen parabolic sub-
group and then inducing. The irreducible non—cuspidal representations are precisely
the irreducible constituents of these induced representation. Criteria are determined

for these induced characters to be irreducible. If an induced character is reducible,



then the constituents are found.

Before doing the computations, we already have some idea as to when the induced
character is irreducible and what the irreducible constituents are if it is reducible. It
is expected that the results will be similar to those in Sally and Tadié¢’s paper [12]. In
[12], the irreducible non—-supercuspidal representations are given for GSp(4, F'), where
F' is a non—archimedean local field of characteristic 0. These results are summarized
in a table given in [I1]. In the local field case, the terms supercuspidal and non—
supercuspidal are normally used instead of cuspidal and non—cuspidal. The natural
analogous representation in the finite field case turns out to be correct and is verified
by computing the character values. However, some of the results in [12] don’t have a

clear analogue in the finite field case.

1.1 Basic definitions and notations

Let I, denote the finite field with ¢ = p" elements, with p an odd prime.

Definition 1.1.1. The group G = GSp(4,F,) is defined as

GSp(4,F,):={g € GL(4,F,) : 'gJg = AJ}, where J = .
-1
for some A € ¥, which will be denoted by A(g) and called the multiplier of g. The set

of all g € GSp(4,F,) such that A(g) =1 is a subgroup and is denoted by Sp(4, ).

Note that for any g € GG, we can uniquely write g as



where ¢’ € Sp(4,F,).

The order of Sp(4,F,), as computed by Wall, is ¢*(¢* — 1)(¢* — 1). So the order
of GSp(4,T,) is ¢*(¢" — 1)(¢* = 1)(¢ — 1).

We recall some basic definitions in representation theory. By a group, we mean
a finite group and by a vector space, we mean a finite-dimensional complex vector

space.

Definition 1.1.2. A representation (m, V') of a group G is a group homomorphism

m:G— GL(V)

and a vector space V', where GL(V') is the group of all invertible linear automorphisms
of V. The representation (7, V) will be referred to by either 7 or V. It is also said
that the group G acts on V' by the action of w. The dimension of the representation
7 is defined as the dimension of the vector space V. A linear representation is a

one-dimensional representation.

Definition 1.1.3. Two representations (7, V) and (7', V') of a group G are called
equivalent or isomorphic if there exists an invertible map h : V. — V’ such that for

all g € G

m(g) = h~'x'(g)h.

Definition 1.1.4. Let 7 be a representation of the group G. A subrepresentation of
7 is the restriction of the action of 7 to a subspace U C V such that U is invariant

under the action .

Definition 1.1.5. A representation is called irreducible if there is no nontrivial in-
variant subspace. The set of all equivalence classes of irreducible representations of a

group G is denoted by Irr(G).



Given a representation V' of a group G, a representation of any subgroup H of G
is obtained simply by restricting the representation to H, denoted by Resgv or by
ResV when the group GG and subgroup H are clear from context. The vector space V'
in these notations may be replaced by the action 7 of the representation. When V' is
replaced by its character y, Resgx or Resy will denote the character of the restricted
representation.

A representation of G can be obtained from a representation on a subgroup H
of G through the process of induction. The representation of G induced from a
representation V' of H is denoted by Indflv7 or, if the group G and subgroup H are
clear from context, by IndV. Again, the vector space V in these notations may be
replaced by the action 7 of the representation and when V' is replaced by its character
X, Indgx or Indy will denote the character of the induced representation.

The induced representation IndeV can be realized by the following construction.
Let G be a group and H a subgroup of G. Let (m, V') be a representation of H. The

induced representation IndgV is isomorphic to the space of functions V& given by
VE={f:G—=V:f(hg)=nh)f(g),for he H, ge G},

with the group G acting on this space by right translation.

1.2 Character theory

When the representation (7, V') is finite dimensional, the group GL(V') can be viewed
as the group of invertible n x n matrices, where n is the dimension of V. Under this

identification, the trace of 7(g) is defined for any g € G.

Definition 1.2.1. Let 7 be a finite dimensional representation of a group G. The



character of 7 is a function y : G — C* defined by

x(g) = tr(r(g)),

where tr denotes the trace map.

It follows from properties of the trace map that characters are class functions, i.e.,
they are constant on conjugacy classes. Note that for the identity element I € G,
x(I) = tr(m(I)) is the trace of the identity map of the space of 7, which is precisely
its dimension.

The character x also takes the same values on equivalent representations. Indeed,
for two equivalent representations © and 7’ of GG, we have, for some invertible map h

from the space of 7 to the space of 7', w(g) = h'w(g)h for all g € G and

tr(m(g)) = tr(h™'7'(g)h) = tx(7'(g))

for all g € G.

Definition 1.2.2. Let G be a group. The character table of G is a square array of
complex numbers with rows indexed by the inequivalent irreducible characters of G
and the columns indexed by the conjugacy classes. The entry in row y and column

C is the value of x on the conjugacy class C'.

C, s e c,
xi | xi(C) xi(C2) - xa(Ch)
X2 | X2(C1)  x2(Ca) -+ xa(Ch)
Xn Xn<Cl) Xn(CZ) T Xn(cn)



For a particular character x of G, the character table of x is defined to be a table of
complex numbers with rows indexed by the conjugacy classes of G with the entry in

row C denoting the value of x on the conjugacy class C.

C1 | x(Ch)
Cy X(C2)
Co | Xn(Cn)

Definition 1.2.3. Let x; and x» be characters of a group GG. The inner product of

x1 and Y- is defined as

(X1 x2)a = |1?| > xi(9)x2(9)

geG

The subscript G will be dropped from the notation of the inner product (, ) when

the group G is clear from context.

Theorem 1.2.4. Let G be a group. The irreducible characters of G form an or-
thonormal basis for the vector space of all class functions of G with respect to the
inner product (-,-).
Corollary 1.2.5. Let x be a character of a group G. Then x is irreducible if and
only if (x,x) = 1.

When a representation 7 of a subgroup H is induced to the group G, the induced

character Y can be determined using the character y of 7 in the following way.
1 _
Indj;(x)(9) =x“(9) = 777 >, xlwgzs™)), forg €G.
| | 2€G,xzgr—1cH

As given in [4], the induced character’s values on conjugacy classes of the group

G can also be found. Let C' be a conjugacy class of a group G. Then the conjugacy

7



class C' splits into distinct conjugacy classes of a subgroup H, say C'= D, U...UD,.

The value of the induced character is given by the formula

Ind§; (\)(€) = x¢(C) = |'§'| D '|C|'><<Di>-

Another important standard result is the following.

Lemma 1.2.6. (Frobenius Reciprocity) Let H < G and let x be a character of
G and v be a character of H. Then

(x; Ind§)e = (Resx, ¥)u

An irreducible character on a subgroup H might not retain its irreducibility when
induced. It is important to note that finite groups have the complete reducibility
property, i.e., every representation of the group decomposes into a direct sum of
irreducible representations. A representation (7, V') of a finite group G is said to be
multiplicity free if in its decomposition into irreducibles, no irreducible representation
occurs more than once.

By Schur’s Lemma, the center of G acts by scalars in an irreducible representation
(m,V). In particular, if G = GL(n,F,) or G = GSp(4,F,), then the center of
G consists of non-zero scalar multiples of the identity matrix. The center of G is
isomorphic to FJ so there exists a character w, : F — €, known as the central

character of m, such that



for every z € Ff, v € V.
If x is a character of F) and (7, V') is a representation of GSp(4,F,), then a new

representation on V' can be defined by

(xm)(9) = x(M\(9))7(9).

where A(g) is the multiplier of g. This representation is denoted by ym and called the
twist of the representation m by the character y. If w, is the central character of ,

then the central character of 7 is wyx?.

1.3 Representations of GL(2,F,)

The representation theory of GL(2,F,) is the first object of study in order to under-
stand the irreducible non-cuspidal representations of GSp(4,F,). A nice treatment
of the representation theory of GL(2,F,) is given in [I] and in [4]. The methods used
to study the representation theory of GL(2,F,) in [I] can be extended with some
modification to study the representation theory of GL(2,F), where F is a local field.

Let Bay(2) be the subgroup of GL(2, IFy) consisting of all upper triangular matrices.
Bgu2) is called the Borel subgroup of GL(2,F,).

Yy a
Barie) = ' € GL(2,F,)

The subgroup of Bgy,2) consisting of matrices with diagonal entries equal to 1 will be
denoted by Ngr2) and the subgroup of Bar,2) consisting of diagonal matrices will be

denoted by Tqr2)-



Let x1, x2 be characters of FF;/. Define a character x of Bgr2) by

Y1 T
X = X1(y1)X2(y2)-

Y2

Denote the representation of GL(2,F,) induced from this character of Bgp) by

X1 X X2-

Theorem 1.3.1. Let x1, X2, 41 and py be characters of ]qu. Then x1 X X2 s an
irreducible representation of degree ¢ + 1 of GL(2,F,) unless x1 = x2, in which case

it is the direct sum of two irreducible representations having degrees 1 and q. We have

X1 X X2 = 1 X g

if and only if either

X1 = 1 and X2 = fio

or

X1 = po and x2 = p1.

Proof: See [1].

The irreducible representation of dimension 1 contained in y X x is the character
g — x(det(g)). The other g-dimensional representation is obtained by taking the
tensor of this character with the ¢-dimensional irreducible subrepresentation of lF; X
1]qu , Where 1qu denotes the trivial character of IF*. This g-dimensional representation
is called the Steinberg representation of GL(2,F,). The Steinberg representation of
GL(2,F,) will play a role in the representation theory of GSp(4, F,). The irreducible
representations y; X xo are called representations of the principal series.

A representation (m, V') of GL(2,F,) is said to be cuspidal if there does not exist

10



a non-zero linear functional [ on V such that

forallv e V,z € F,. If F is a local field and if (7, V') is a representation of GL(2, F)
such that there does not exist a non-zero linear functional [ on V satisfying the

condition above, then the representation (7,V’) is said to be supercuspidal.

Proposition 1.3.2. Let (7,V) be a cuspidal representation of GL(2,F,). Then the

dimension of V' 1s a multiple of ¢ — 1.

Proof: See [1].

The irreducible cuspidal representations of GL(2,F,) and their character tables
are found in [4]. Let v be a generator of F and let ¢ be a character of F, such
that ¢ # ¢?. All irreducible cuspidal representations of GL(2, IF,) are of the form X,

where the character table of X, is given by the table below.

Table 1.1: X4 character values

Conjugacy
Xy character value
class

oy = ( x) (4 - 1)6()

b, = (x ;,) ~6(x)

11



Table 1.1 — Continued

Conjugacy
Xy character value
class

o= (3 ) | -t + ot - y)

Let ¢ be a non-trivial character of I, and let )5 be the character of Ngr,(2) defined
by

This defines a representation of Ngp,2). The representation of GL(2, IF;) induced from

1y is denoted by G.

Theorem 1.3.3. (Uniqueness of Whittaker models) The representation G is
multiplicity free. Every irreducible representation of GL(2,F,) that is not one dimen-

stonal occurs in G with multiplicity precisely 1.

Proof: See [1].
If (m,V) is an irreducible representation that can be embedded into G, we call
its image a Whittaker model of m. A Whittaker model of 7 is then a space W(w) of

functions W : GL(2,F,) — C having the property that

w | f g| = v W),

The functions W are invariant under right translation and give a representation of

GL(2,F,) which is isomorphic to w. Representations that have a Whittaker model

12



are called generic.

1.4 Generic representations of GSp(4,F,)

Whittaker models for representations of GSp(4,F,) can also be defined. Consider
the subgroup Nggp) of GSp(4,F,) defined as

Nasp) = € GSp(4,F,)

—_ 8 %

Let 91 and 9, be non-trivial characters of F, and let 1)y be the character of

Nasp(a) defined by

(N :f * = V1(z)2(y).

This defines a representation of Nggpa). Denote the representation of GSp(4,F,)
induced from ¥y by G and its character by xg.

If (7, V) is an irreducible representation that can be embedded into G, we call its
image a Whittaker model of m and say that 7 is generic. A Whittaker model of 7 is

then a space W(m) of functions W : GSp(4, ;) — C having the property that

Genericity of an irreducible representation 7 of GSp(4,F,) is easy to determine

13



using character theory. Indeed, for a particular irreducible non—cuspidal representa-
tion m of GSp(4,F,) with character x,, one computes the inner product (xx, xg). If
(Xxs Xg) = 0, then 7 is not generic. If (x,, xg) # 0, then 7 is generic. Moreover, when
(Xxs Xg) # 0, then (xr, xg) = 1, i.e., Whittaker models are unique. The uniqueness
of Whittaker models is known in general, but it is verified computationally.

Therefore, to determine genericity, we compute the conjugacy classes of Nggpa)
and the character table of G. Note that the character of the representation of Nggp(a)
defined above is ¢ ()2 (y).

14



Chapter 2

Conjugacy classes

The conjugacy classes and their orders of the unitary, symplectic and orthogonal
groups can be determined using the results of Wall [I5]. Srinivasan, in [14], used
Wall’s results to explicitly determine the conjugacy classes and orders of centralizers
of elements of Sp(4,F,).

Wall’s results cannot be directly used to determine the conjugacy classes of the
group GSp(4,F,) but they can be used to find the classes of SO(5,F,). This is
particularly useful because SO(5,F,) is isomorphic to PGSp(4, F,) := GSp(4,F,)/Z,
where Z is the center of GSp(4,F,). These classes are then used to determine the

conjugacy classes of GSp(4, F,).

2.1 An isomorphism from PGSp(4,F,) to SO(5,F,)

We follow the method in [I1] to define an isomorphism.

Definition 2.1.1. O(5,F,) is defined by {g € GL(5,F,) : ‘g9 = I5}, where I is the
5 x 5 identity matrix and SO(5,F,)" := {g € O(5,F,)" : det(g) = 1}. Define

15



O(5,F,):={g € GL(5,F,) : 'gJsg = J5}, where J5 = 1

and SO(5,F,):={g € O(5,F,) : det(g) = 1}.

We will show PGSp(4, F,)= SO(5,F,)’ first by showing that PGSp(4,F,) is iso-
morphic to SO(5, F,), then showing that SO(5,F,) is isomorphic to SO(5,F,)’. First
note that the center of GSp(4, F,) consists of diagonal matrices, with non-zero entries
on the diagonal. Recall that the characteristic of the field IFy is p # 2.

Let V = ]Fg and ey, e, e3,e4 be the standard basis vectors of V. The group
GSp(4, F,) acts on V' by matrix multiplication from the left. GSp(4,F,) also acts on

the tensor V ® V' twisted with the inverse of the multiplier. So

p(g)(v @ w) = Ag) " (gv) ® (gu).

The action p of GSp(4,F,) on V ® V is trivial on the center of GSp(4,F,) and so
there is an action of PGSp(4,F,) on V® V.

Define a symplectic form on V' by

for v, v" € V. Now define a symmetric bilinear form on V' ® V| given on pure tensors
by

(w@w,v @uw') = (v,v)(w,w),

16



forv@w, v @w e VeV.

Both of these bilinear forms are invariant under the action of Sp(4,F,) and the
symmetric bilinear form (-, -) is preserved by the action p of GSp(4,F,). We embed
VAV inV ®YV by the map v Aw — %(v@w—w@v).

The restriction of our symmetric bilinear form (-, -) to the wedge V AV is given

by

(VAw, v Aw') = %((U, V) (w,w") = (v, w)(w,v")).

Let X be the image of the 5-dimensional subspace spanned by
61/\62, 261/\63, 61/\64—62/\63, 62/\64, 264/\63.

Explicitly, X is spanned by the vectors

1

T = 5(61®€2_62®61)7

Ty = e1®e3—e3R ey,
1

Ty = 5(61®€4_64®61—€2®€3+€3®62>7
1

Ty = 5(62®64_64®62>7

Ty = 64@63_63®64'

It is straightforward to check that the matrix of (-,-) with respect to this basis is J;
and that X is invariant under the action p of GSp(4,F,). Since (-, -) is preserved by

this action so there is a homomorphism

ps - GSp(4,F,) — SO(5, F), ps(9) = (aij)

where the a;; are determined by the action pon V&V, i.e.,

17



p(g)l’j = Q171 + (252 + a3;T3 + Q454 + QA5;T5.

The kernel of ps is the center Z of GSp(4,F,) and so there is an isomorphism

ps 1 PGSp(4,F,)—SO(5, F)

We will now give an isomorphism from SO(5,F,) to SO(5,F,)". First note that
J5 is the matrix of a non-degenerate symmetric bilinear form. Define the quadratic

form

Q'(z) = (z,2) = "5z,

where (-, -) is the form defined above. This form is equivalent to the bilinear form

Q) :== "oz = I,

i.e., there exists a P such that PJ;*P = I5. To see this, choose a new basis for X

such the matrix of the bilinear form is I5. For x € X, z is of the form

T = C1X1 + Co%o + C3T3 + C4T4 + C5T5.

Then,
Q' (z) = 27125 + 2w9m4 + 13

Define a new basis vq, vq, v3, vy, v5 of X as follows.

1 1
V1 = 5901 + x5, Vg = 5:702 + x4, Vg = X3.

To choose vy, v5, we look at two cases.

18



Case 1: p=1 (mod 4)

Then —1 is a square. Say b? = —1 for some b € F,. Then we choose
1 1
Vg4 = b<§$1 — ZE5), Vs = b(él’g — .%'4)

Case 2: p =3 (mod 4)

Over a finite field, —1 is the sum of two squares, say a% + a% = —1. Choose
(521 — xs5) (522 — 24) (—1 —5) — (—1 — I4)
vy =a1(=x T5) + as(=x T4), Vs = a1(=x T as(=x Ty4).

4 157 5 2052 4), Us 157 5 2(5 72 4

With this new basis, it is clear that an equivalent non-degenerate symmetric bi-

linear form of Js5 is I5. Define the matrices

1 1
1 3 1 3
1 1
1 3 1 3
P = 1 , Py = 1
_ b _ay _ a1
b , B aq (05} 5 D)
_ b _ o _a
b 3 a9 aq 3 5

In either case, P;Js'P; = I5. Let P = P;, for the appropriate P;. Define the map
op : SO(5, F,) — SO(5,F,)

op(g) :=="P'g'P,

and ¢p is an isomorphism.
The maps defined above are composed to get an isomorphism from GSp(4,F,) to
SO(5,F,)’, which will be called ps p := ¢p o p5. The conjugacy classes of PGSp(4, )

can now be determined by computing either the conjugacy classes of SO(5,F,) or of
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SO(5,F,)’, then using the appropriate isomorphism.

2.2 SO(5,F,) and PGSp(4,F,)

We can determine the conjugacy classes of O(5,F,) using Wall [15]. To do this, we
first find the Jordan canonical forms of elements of GL(5, FF,) whose conjugacy class
has a nonempty intersection with O(5,F,). Once the possible Jordan canonical forms
of elements in O(5,F,) are found, it is straightforward to find class representatives
in O(5,F,). Wall [I5] also gives a formula for the number of conjugacy classes of
O(5,F,), which is determined to be 2¢* + 6¢ + 14. Once the complete list of the
classes of O(5,F,) is computed, the class representatives and orders of centralizers
for SO(5,F,) are easily found.

Let k be a generator of ]F;(4 and let ¢ = k71, 0 = xTH =091 and v = 671
The element 7 is the generator of the set of elements in [F 2 whose norm over I, is
1 and ¢ is the generator of the set of elements in I+ whose norm over F 2 is 1. Let
a,b € FJ be such that —a? + b?y is a square. Let ¢ = v + 1.

Define the sets
Ry = {1, b g~ 1)),

Ry is a set of $(¢ — 1)? distinct positive integers i such that 67, =7, 6% and 6~ are
all distinct,

Tr={1,...5(a=3)}

T={L...5(¢- 1}

T3={1,..,q—1}.

The table below lists all of the conjugacy classes of SO(5, F,) and PGSp(4,F,) to-
gether with the order of their centralizers in each group. Note that the class represen-

tatives are written in a form that may not be in SO(5, F,), respectively PGSp(4, ),
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but will belong to SO(5,F ), respectively PGSp(4,F ).

This is done to indicate

their eigenvalues, which are used to determine the orders of their centralizers.

Table 2.1: Conjugacy classes of SO(5,F;) and PGSp(4,F,)

Class Class
Order of
Notation representative in representative in
centralizer
1
1
! 1
A, 1 ) q*(¢* = 1)(¢* - 1)
1
1
1
12
1
1
Ay 1 ! 1 ¢t(? - 1)
1 -2
1
1
1 -2 -1 -2
1 1
1 1 _
Az 1 } 2¢3(q — 1)
12
1
1
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
1 -2 —y =2y 1 "
! 7 1 -1
Az 1 ) 2¢3(q+ 1)
1 2
1
1
1 -2
11 -1
1 -1 -1 -1 L
As 11 2 e
1 -1
12
1
1
—1
-1
-1
Bll 1 ! n 2q2(q2_1)2
—1
—1
—1
—1
. 1
o 2l 2( 4
By -1 ) 2¢°(¢* = 1)
2y
-
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
-1
1
! 1
By 1 B 2q(q* = 1)(q — 1)
1
-1
-1
1
. 1
k] y 2
Bas -1 X 2q(¢" = 1)(g+1)
27y B
-
1
-1 -1
-1 1
-1 1 .
Bs 1 q2(q2 - 1)
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
-1 2 -1 -2
-1 1
—1 1 L
B41 1
1
-1 -2
-1
-1
-1 2y -1 -2y
-1 1
-1 1 )
B42 1 !
) 1
-1 -
7 -1
-1
4q¢*
2
-1 a b a
2
1 L —2
2y _ay b
B43 -1 —a K 2 i
1
2y 2by
Y
-1
-1 —2c 2 —4c
1 ¢
1 _c
2y ¥
v 2y
B44 —1 1
2 4~
Y
-1
-1
1 -1
11 -1
1
Bs - . 2q(q — 1)
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
Lo )
27 -1 ) 7z
Bsa —1 2 2q(q+1)
1 2y
2y _1
1 2
7t .
Cl (2)7 1 1
1 i al¢* = 1)(g—1)
1€ 1 ! i
; v
.
. 'y_i 1
021(2), —1 .
1 . 2(q —1)*
1 €Ty -1 K i
; -
-
. 77i 1
Caa(i), 2
-1 K . 2(¢* - 1)
; -
(SN 2y | i
-
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
,Y—Z
Cs(i), 11 -t ' _11
T o q(qg —1)
1 €1y 1 ! i
,Yi
’Yi ,yi
. 1 -1
Ca(i) v - 5
1 i q(q —1)
1€ T1 ~t 7 1
’}/7i
7t ;
C5<Z)7 ok K 1
1 X a(¢* —1)(¢ — 1)
1€ T1 yt i
i v
v
I
C6(i> j)a vt ! i
v 2
—1
i,7 €T, ! i ~J <q )
. ) ! . it
1<) v’
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
g—ai
Dl (Z)a 0" ! .
1 4 -1
) 0%
1 € Ro o i
g 7
1 .
Dy (i), - .
1 ” o(¢* = 1)(g+1)
1€ T2 n~t gai
1
D31(Z.)7 77i gai
1 ” 2(¢* - 1)
7€ T2 nt _gai
-1
2
Dss(7), -
-1 D32(Z) 2(q + 1)2
1 €Ty —n~?

=

27




Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
-
D4(i7 ])7 ! nt o
1 o -1
1 € Th, i Ul
_ ig:
RSN v !
ni 7 I
Ds(i), L -
. S gai  gai q(g+1)
1 €Ty 1 . gai
7]77]
. T]i 1
Dy (i), nt ;
! 7 - q(¢* = 1)(g+1)
1 €Ty nt )
T]—'L
77—J
D7(ia ])7 n~?
o 1 Dr(i. j) (4+1)
ni
1 <7 ud
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Table 2.1 — Continued

Class Class
Order of
Notation representative in representative in
centralizer
SO(5,Fy) PGSp(4,Fy)
n' n'
: . , 1 -1
Ds(i) U -0’ .
! y q(q +1)
1 €15 ' K )
17—7/
[
D9 (2)7 ¢t
1 Dy(i) ¢ +1
1€ R1 ¢t
¢

Explicit forms of the classes Dsy(i), D7(i,j), and Dy(i) are omitted since they have a
more complicated form and are not classes of the Borel, the Siegel parabolic, or the

Klingen parabolic subgroup.

2.3 GSp(4,F,)

The list of conjugacy classes of PGSp(4, F,) is used to determine the conjugacy classes
of GSp(4, F,). Let’s investigate how the class representatives of PGSp(4, IF,) lead to
representatives for the classes of GSp(4, F,).

Consider the natural projection map from GSp(4,F,) to PGSp(4,F,) given by

GSp(4,F,) — PGSp(4,F,), g— 7.
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Let g,h € GSp(4,F,). If ¢ = xhz™!, then, by taking multipliers on each side, it
is clear that the multiplier of g is equal to the multiplier of h, i.e., A(g) = A(h).

Moreover, under the projection map,

g=xhex'=T-h- -z L

So if two elements are conjugate in GSp(4, ), they must be conjugate in PGSp(4, F,,).
The list of class representatives in PGSp(4, ), when pulled back to GSp(4, IF,), hit
class representatives of all the conjugacy classes of GSp(4,F,). Suppose now that
two elements g, h € GSp(4,F,) are conjugate in PGSp(4,F,), i.e. §=7-h-2~1, for

some T € PGSp(4,F,). Then, for some v* € S,

Taking multipliers on both sides of the equation above, we have A(g) = v*A(h). So if
the multiplier of g is a square, then the multiplier of h is a square and if the multiplier
of g is a non-square, then the multiplier of i is a non-square. Write g and h in the

following way

,}/ih ’th
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with ¢',h' € Sp(4, F,), ig,in, € {0,1}, and j,, jn € T3. So A(g) = vt A(h) =
A *2in If g and h are conjugate, then iy, = ij. Then y2h = 4%h or (y99)% = (y7n)2
So A(h) = £A(g), i.e., the multipliers can only differ by a minus sign.

It is possible that an element g of GSp(4,F,) is conjugate to —g. An example is

The centralizers are somewhat affected when we pull back our representatives
in PGSp(4,F,) to GSp(4,F,). There are two types of pullbacks. The first type
consists of elements ¢ such that g # z(—g)z~! for any € GSp(4, F,). The second
type consists of elements g such that g = z(—g)z~! for some z € GSp(4,F,). Let
Centpgsp(g) denote the centralizer of g in PGSp(4,F,) and let Centggp(g) denote
the centralizer of g in GSp(4,F,).

Type 1

Let ¢ € GSp(4,F,) be of the first type, i.e., g is not conjugate to —g. Let
h € Centpggp(g). Then g = h-g-h~1. When pulled back to GSp(4,F,), g = 20hgh™",
with 29 = 1. 2y # —I since ¢ is not conjugate to —g. So 29 = I, g = hgh™!, and

h € Centgsp(g). We get a short exact sequence

1 — Z — Centggp(g) — Centpgsp(g) — 1.

Therefore #Centgsp(g) = (¢ — 1) - #Centpasy (7).

Type 2

Let g € GSp(4,F,) be of the second type, i.e., g is conjugate to —g. Define the
set S, = {h € GSp(4,F,) : hgh™' = —g}. Fix s9 € S,. S, is not a group, but
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there is a bijection of sets S, — Centggp(g), given by the map h — sph. Given
h € Centpgsp(7), either h € Centgsp(g) or h € S,. S, U Centggp(g) maps onto
Centpgsp(g) via the projection map. Moreover, Centgg,(g) = S, U Centggp(g) is
a group with respect to matrix multiplication and the projection map is a group
homomorphism. Centgs,(g) is a subgroup of Centgg,(g) of index 2. We get a short

exact sequence

1 — Z — Centgg,(g) — Centpasp(7) — 1.

Then #Centqg,(9) = (¢ — 1) - #Centpgsy (). Also, 2 - #Centgsp(g9) = #Centgg,(9)-

-1
So CentGSp(g) = qT : #Centp(;sp(g).

Thus, given a class representative g € PGSp(4, F,), we pull it back to GSp(4, F,).

Then, we determine if g is of Type 1 or Type 2. If it is of Type 1, then there are g — 1
#GSp(4,Fy)
(g — 1) - #Centpasy(9)

conjugacy classes z;g, with

conjugacy classes zg, for z € Z, each of order . If the pullback

is of Type 2, then there are q

Each of these classes is of order

#GSp(4, Fq)
D) L Centpasp(g)

Explicitly, the list of conjugacy classes of GSp(4,F,) is given in the following table.
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Table 2.2: Conjugacy classes of GSp(4,Fy)

Class
Number Order of
Notation representative in
of classes centralizer
Gsp(4’ IFQ)
k
Al(k)a 7 ,Yk
& q—1 #GSp(4,F,)
kels v &
Y
k
Y
A2<k)a k k
LA q—1 ¢'(¢* = 1)(g—1)
keTy v i
Y
k k
Y Y
Asy (k), ko k
T qg—1 2¢(q — 1)?
keTy v i
Y
k k+1
Aga (), T -
k q—1 2¢°(¢° — 1)
keTy v i
Y
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
( ) of classes centralizer
GSp(4,IF,
k k. k
As(k), 7 % _,Z//k )
ko _ Ak q—1 q*(q—1)
keTs 2 77“
k
-
B (k) k —1
) q
T — ¢*(¢® —1)*(¢— 1)
keT, v . 2
-
k
Y
Bis(k) k1 _1
’ q
LT 7 ok = ¢(¢* =g —1)
SIS
/7k+1
k
~
By (k) k —1
) q
7 K — q(q¢* = 1)(g —1)?
keT, - 2
_f)/k
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
k
Bas(k), AR 7 g—1 (@ — 1)
ok O q\q
kel k+1 7
-
k k
By(h). T o
. qg—1 q*(¢" = 1)(g—1)
keTs v .
-
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
( ) of classes centralizer
GSp(4,IF,
k k
- Y
B (k _
1 (k), A _Zk qg—1
keT, v . 2
-
k k
- Y
B (k _
12(k), ok _71:;1 g—1
kel g k 2
-
2¢*(q — 1)
k ak
Y -5
Bus(k a _
13(k), k41 _§7k+1 bﬁckﬂ g—1
2
kel R 7
k k
AN
Bu(k), k1 9h1 q—1
k
kel k1 7
Y
kA k
Bsi(k), ! 7k qg—1
? L (4- 1
—F = 2 M
kel ok
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
2,Yk+1 l,\/k
B52(/<7); 1.k ’ qg—1
b L (@~ 1)
keT —2 2 o
2 Lk
—1ly
Cl (Z7 k)7 fyk
' k q—1)(¢g—3
i€t v i % q(q* = 1)(q — 1)?
keT; AR
Cgl(i, k)), '7k
Ak (¢—1)(g—3)
. ’}/ . 3
1€ ’ka - 1 (q 1)
ke T2 _fyk—H
Chn (i k), "
) kt1 q—1)(¢g—3
e " IR VTR
keTs —yktitt
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
Cs(i, k), ko Ak
i (4= 1)(g—3)
1 € T; v i ; A A q(q _ 1)2
1 ,yk—o— ,y:—i-' 2
keT; e
C4(i, k?), k _,.Yk
kti (¢—1)(g—3)
, € ' v B e —— —1)?
ieT) i 5 q(g—1)
ke Ty v
Cs(i, k), ARt
' k q—1)(¢g—3
i€t T % q(q* = 1)(q — 1)?
7 k
keTy 7
06(7;7 j7 k)a
e .
A o . (¢ = 1)(a = 3)(a—5) (¢ — 1)
< ,-Y/H—J 8
t<J N
keTs
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
Dl(i7 k)? fyk
. R 7’“6” (q - 1>3 ( 2 1)( o 1)
keT; AR
Dg(i, k?), ,.ykez
i e T s (=17 q(¢* — 1)
ke T, S
,Yk‘gi
D3 (i, k) kgai —1)2
) I qi q
! kpi ( 4) (qz_l)(q_l)
ik €T -0
_,Ykgqi
D3, (i, k), —1)2
Disi ) e R PR
1,k els
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
D4(i7 j7 k)?
. SACAl
o D=3 1 -1
j cT yk+igai 4
1 FR+igi
keT;
Ds(i, k), kG _,Zkez _—
. V<0 q9— 2 _
Le T2 ,ykeqi ,ykeqz: 2 Q(q 1)
ke T, yr09
D6(i7 k)? fyk
by (¢ —1)?
ieT 7N » q(q® — 1)?
ke T; Y
D7(i7 j) k:)7
1,7 €15 — 1)2(g —
an Ds(i, j, k) W=Dz g+
i <j
kels
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Table 2.2 — Continued

Class
Number Order of
Notation representative in
of classes centralizer
GSp(4,Fy)
Dg(Z, k?), ,yk _,yk
i e T 7 (917 q(¢* — 1)
2 —i
v ) 2
kels Y
D9(i7 k)?
. 2_1)(¢g—1
ie Ry Dy(i. ) DD (1))
kels

There are (¢* + 2q +4)(¢g — 1) conjugacy classes.

2.4 Borel, Siegel, and Klingen subgroups

The conjugacy classes of the Borel, the Siegel parabolic, and the Klingen parabolic
subgroup can now be easily computed using Table 2.2l One does this by determining
which conjugacy classes have a non-empty intersection with the subgroup, how each
class splits, and computing the order of the centralizer of the class in the subgroup.
In each of the following tables of conjugacy classes, the notation will indicate which
conjugacy classes of GSp(4,F,) occur in the subgroup and how many components
the splitting has if the class splits into multiple classes in the subgroup. For example,

the Borel subgroup is denoted by B. The class Ay(k) has a non-empty intersection
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with B, splitting into two conjugacy classes, denoted by BAL(k) and BA%(k).

2.4.1 Borel

The Borel subgroup B of GSp(4, F,) is the set of all of the upper triangular matrices,

* %X
o

€ Gsp<47 Fq)

* X X %

Every element g € B can be written uniquely in the form

a 1 1 A p K

_ b 1 z 1 I
9= cb! 1 I

ca™l 1 1

with a,b,¢c € F) and z,k,\, i € Fy. The order of B is therefore ¢*(¢ — 1)®. The
multiplier of the matrix g given above is A(g) = ¢. The subgroup of B of elements
which have 1 on every entry on the main diagonal is Nggp4). The conjugacy classes

of the Borel subgroup B are given in the following table.
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Table 2.3: Conjugacy classes of the Borel subgroup

Number
Class Order of
Notation of classes
representative centralizer in B
in B
k
BA1<k)7 K fyk 4 3
) q—1 q*(q—1)
keTs v .
Y
k
~
BAj(k), ko ok
LA q—1 ¢*(q—1)?
ke T, v .
Y
k k
Y Y
BA3(k), K ) ,
) q—1 q*(q—1)
ke T, v 3
Y
k k
Y 8
BA, (k), ko
LA g—1 2¢°(q — 1)
ke Ty v &
v
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
k k
Y Y
BA?Sl(k>7 k k
T g—1 ¢*(q—1)*
ke T v )
Y
E Ak
BAY, (k). Tk
Y 2 2
r q—1 ¢*(q—1)
ke T v _Vk
Y
k k+1
BA32(]€), i ,yk: _,Yk 7 3
A q—1 2¢°(¢ — 1)
keTs v N
~y
kA k k
BAs(k), 7 zk _3k ,
! N qg—1 *(g—1)
keTs v _Z
v
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B

BBll1<k)7
kel

BBy, (k),
kel

BB} (k), o
17 - q(q —
kel

s, | |7 g1 .
ke ( —* k) 2 a=1)
v

45




Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BB3, (k), ! Ak qg—1 3
iy 5 q(qg —1)
keT, v .
Y
k
BB (k). L -1 '
k 5 q(g—1)
keT, v .
-
k
BBj(k), ! ok ! , ,
" q—1 ¢°(¢—1)
ke T, v .
-
k
5
BBg(k), k k
LA q—1 ¢*(q — 1)
ke T, - .
Y
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
k k
-
BBy (k), AR ! qg—1 9
k 5 2¢*(¢ — 1)
keT, v .
-
k 1.k
Y i
BBj, (k), VY 1
v _’yk qT 2q2(q - 1)
ke T LA
Y
k k
BBiQU{;)v 7 ,yk’ _,Yk-i-l 7 q— 1 )
k 5 2¢*(¢ — 1)
ke T v N
-
k 1, k+1
17
BBZQ(k)v /Y _,)/k: —f}/k * q— 1 9
K 5 2¢°(q — 1)
keT, - .
Y
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
k k
=
BB, (k), Ak qg—1 9
k k T Q(q - 1)
keT, - _’Vk
-
k k
=7 =7
BB§1<k)7 —~k qg—1 Y
k k 9 q(q )
keT, v _z
Y
k k
= =7
BB§1<k)a uT L qg—1 9
k — q(qg —1)
keT, - Vk
Y
k k
8 Y
BBél(k)v S qg—1 (g—1)?
ko k . q\q
keT, v Vk
-
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC{ (i, k), o
k (¢ —1)(g—3)
- *o lg=Dle=5) )
ieT) i N 5 q(g—1)
kel; Y o
BC%(i, k), Rt
ki (¢ —1)(g—3)
. ’)/ AN o 1 3
ieTy i k 5 q(g—1)
kel; Y
BC3(i, k), AR
k (¢ —1)(g—3)
. Y . —1)3
ieT) jour 5 q(g—1)
ke T; ’Vk
BC(i, k), .
ket (¢ —1)(g—3)
. ’y AN o 1 3
1€ T1 ,}/k | 92 q(q )
keTs et
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC211 (17 k}), f)/k
—k (¢—1D(g—3)
- *o lg=Dla=5) 3
kel - e
BC2,(i, k), ARt
e (4= 1lg-3)
. ’)/ AN . 1 3
ke T -
BC3, (i, k), ARt
k (¢—1(g—3)
. Y ) A -1 3
kel _,yk
BC3, (i, k), ki
et (¢—1(g—3)
. ’)/ AN . 1 3
keTy v*

50




Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC3, (i, k), NS
—k (¢—1D(g—3)
- *o lg=Dla=5) )
kel 8
Bogl (17 ]{?), f)/k
(4= 1lg-3)
. ’y AN . 1 3
kel _/Yk—H
BO271 (17 k?), —fyk
— bt (¢—1(g—3)
. ’)/ A . 1 3
kel /Yk—H
BOSI (17 k)7 —fyk
k (¢—1(g—3)
- g | la=Dla=5) )
keTy AN
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC3(i, k), Bk
k (¢ —1)(q—3)
1 €T v ; ; _ q(q —1)?
1 ,yk—l- ,},i—l-' 9 ( )
kel; Y -
BC2(i, k), Bti ot
ki (¢ —1)(q—3)
1 €T v - q(q —1)?
kel; Y
BC3(i, k), AR k ki k .
- gl ¥ \a=\9=2) 1)
ieT) jour k 5 q(g—1)
kel; Y
BC4(i, k), o k ,yk k T,
. +1 +1 q— q—
1€} v i v - q(q — 1)2
Y _ 2
keTs 7
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC} (i, k), F Ak
kb (¢—1D(g—3)
. ’y AN o 1 2
ieTy e k 5 q(g—1)
kel; Y
BC%(i, k), N PV RN
o | | a= D=3
ieT i AN —_—Y q(q—1)?
1 ,yk—l- _,yz—l- 9 ( )
kel; Y
BC’;3 (i, k?), ,yk—z
kook (¢—1(g—3)
: v A A ) —1)2
ieTy o N 5 q(g—1)
kel; Y e
BC(i, k), AR
kook (¢—1(g—3)
: v A A ) —1)2
1€ T1 ,}/k 92 q(q )
keTy yE
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC3(i, k), Rt
k —1)(g—3)
. Y (q q -1 3
ieTy i | 5 q(g—1)
keTy b
BC2(i, k), o
ki (¢ —1)(g—3)
ieTy e 5 q(g—1)
ke Ts ’Vk
BC3(i, k), o
ki (¢ —1)(g—3)
. ) A A -1 3
ieT) jour 5 q(g—1)
ke T; ’Vk
BO?(Z',]{?), ,ykfz
F (¢ —1)(g—3)
. ’)/ AN o 1 3
1€ T1 ,}/k | 92 q(q )
kc T3 k+i

o4




Table 2.3 — Continued

Number
Class Order of

Notation of classes

representative centralizer in B
in B

BC(i, 4, k),

1,7 €T '
)= v A (4= 1a = 3)a ) (g—1)
. . ’)/k+] 8
1<y k+i+j

kel;

3062(27]’ k)a
N A
ieT :
t,J € AR+ (a=1@=8)(a=5) (¢g—1)3

. . k+1
i< j v ’

keTy

BCg(i, 4, k),
k+i+j
i,je€T At (4= 1)(a~3)(a~5) (q—1)3
1< ] i

ke Ty

BCi(i, j, k),
k+j
e

EEA v (a—1)(a—3)(a—5) (g —1)3
o ARt — s

<7 i

kels
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BC2(i, 4, k),
o ,yk:-i-j
hieh oURNAE! (4= (@ =3)(a=5 _1)3
. K 5 (¢ )
<] i
keTs
1,7 €1 '7k+i+j N (2 — 1)(g = 3)(qa = 5) (C] _ 1)3
o v . ’
keTs
BOYi:3.K)s | (e
. k
1,5 €T i (q—l)(q;3><q—s> (g—1)3
i< j ,ykJrj
ke Ty
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Table 2.3 — Continued

Number
Class Order of
Notation of classes
representative centralizer in B
in B
BCg<Zv j7 k)a k
~y
1,7 €T yFH s (a- 1><q;3)<q—5> (g—1)3
Y
i< kit
ke T3

2.4.2 Siegel

The Siegel parabolic subgroup P of GSp(4,F,) is defined as

S

* X X X
EE

GSp(4, IFy)

Every element p € P can be written uniquely in the form

(SIS

QL o

Na/A —Ab/A
—A¢/A  Ad/A
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with A = ad —bc € Fy, A € Iy and z,k, 0 € Fy. The order of P is therefore

q*(¢* — 1)(qg — 1)?. The multiplier of p is A(p) = A. We also define

1

A/ — tA—l

for any A € GL(2,F,).

The conjugacy classes of the Siegel parabolic subgroup P are given in the following

1

table.
Table 2.4: Conjugacy classes of the Siegel parabolic subgroup
Number
Class Order of
Notation of classes
representative centralizer in P
in P
k
PA(k), T o )
. q—1 q*(¢* —1)(g—1)
keTs v N
Y
k
~
PAy(k), ko ok
LA q—1 ¢*(q —1)?
keTs v N
Y
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
k k
PAL (k), LA .
T q—1 2¢%(q — 1)
ke Ty v i
Y
kA k
PAgl(k)a K :;k 9 9
E .k q—1 q“(q—1)
ke Ty v Z
Y
k k+1
PAg(k), T ]
T q—1 2¢%(¢> — 1)
keTs v i
Y
kA k k
PAs(k), A ,
kK q—1 (g—1)
keTs v Vk
Y
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
k
-
PBll(k>7 ,Yk: q—l 9 _ 3
k 5 q*(q—1)
keT, v .
-
,yk
PBlz(k?) k+1 -1
) q
LT K ok 5 (¢ —1)(g—1)
SH D)
’7k+1
k
5
PBy, (k) k 1
’ q
ok = q(q® — 1)(q — 1)?
keT, v N
-
k
-
PB3, (k) k 1
’ — q
T = q(q¢* = 1)(g —1)?
keT, v .
f)/
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
k
-
PB3, (k), Ak qg—1 3
Lk 5 q(g—1)
keT, v .
v
Ak
P Boy(k) k+1 1
’ q
7 ok 5 a(¢* = 1)(¢ - 1)
kel k+1 7
-
k k
-
PBs (k). N 2
k q—1 ¢°(¢—1)
keTs v N
-
k k
- Y
PB41(]{7> k k -1
’ — q
(! ek 2(g 1)
keT, v N
-
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
k k
- Y
PB42(k>7 ,Yk _fyk+1 q— 1 2 2 -1
k 5 q*(q—1)
keT, v .
-
o4 —o
PBys(k) k41 ol K1 -1
) q
" - U 5 2¢°(q — 1)
kel k+1 7
Y
k k
c
PB44(]€), ,yk—i-l 7 7 2,Yk’+1 q— 1 2
k — 2¢* (¢ — 1)
kel k+1 7
Y
k. k
PBY, (k), L 1
7 q 1 2
IV 5 q(q —1)
keT, v 7k
-

62




Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
kK
PB521(]{5>7 ! _716 qg—1
Y i - —1)2
k. k 9 Q(q )
keT, v Z
v
PBS, (k) e T |
LA L e T == )2
k 5 q(g—1)
keT, v . N
- -
2,yk+1 l,\/k
PBsy(k), 1k ’ q—1 2
2 LSS o~ 1)
kel 2
— Lk
PCY(i, k), vk
' k qg—1)(¢g—3
1€T) v i —( )2( ) q(¢* —1)(q¢ — 1)*
k €Ty Rt
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PC?(i, k), ket
' ki qg—1)(¢g—3
i€y LA @D g -1y - 12
7 k
keT; Y
PC} (i, k), Akt
k (¢—1)(g—3)
~ *o lg=la=5) 3
ieTy i k 5 q(g—1)
keT; Y
PC211(Z7 k)) 'yk
Ak (¢—1)(g—3)
: *o la=Dlg=5) )
keTy —yt
PC3% (i, k), N
— ki (¢—1)(g—3)
. ’y A . 1 3
keTy —*
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PC3, (i, k), Nax
) k (¢—1)(¢—3)
1 €T v _7k+i -1 (q — 1)3
kel _'Vk
PC3 (i, k), ENES
Ak (¢—1)(g—3)
. ’7 . 3
1 €T fykﬂ- -1 (q—1)
ke T /Yk
PCL(i, k), "
) kt1 q—1)(¢g—3
i€y ! e % (¢*=1D(g—1)
keT, —kti
PC222<Z’ k)’ 7'Yk+i
) kil qg—1)(g—3
Jer, : LI -y
keT, SR
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PC1(i, k), N
ieT, 7" , , le=Dlg=3) q(q — 1)?
1 ,yk+z ,y:—i-z' 2
keT; Y o
PC3(i, k), Akl
ki (¢ —1)(g —3)
ieT 7 e alq — 1)
1 'Yk _,.Zk 2
keT; Y
3/ . .
PC5(i, k), ARt k N k D)
. q— 1)lqg—
1€ Tl v ki v - 5 q(q - ]‘)2
vy 2
k€ Ty v*
PCL(i, k), N Ak
. kot (¢—1)(¢—3)
1€T) v fyk’l - 9 q(q — 1)2
k€ Ty ou
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
o BRI
1 €T; v i 7 i I — q(q — 1)2
1 ,.Yk—i- ,.yk;- 92
keT; Y
PCL(i, k), ki
k (¢—1)(g—3)
ieT) i 5 q(g—1)
keTy yE
PC2(i, k), k
ki (¢—1)(g—3)
. ot 13
ke 7
PCY(i,5,k),
.. k+i Se s
1,7 €1y 8 i <q—1><q;s>(q ) (g —1)3
i< j ,yk+i+j
kels
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PCG2<Z7 j? k)? ’}/k+7l+]
. k-+j
e T C1)(q - 3)(q — 3
1,7 1 Y 7k:+z' (a—1)(a - 3)(g - 5) (g—1)
1< j 'yk
kels
PCg<Z7j7 k)? ,Yk—l—i-‘rj
o k+i
e T ~1)(q = 3)(q - 5) 3
1,] 1 Y fy’fﬂ' (a—1)(a - 3)(q (¢—1)
1< ] K
kels
PCg(Z,j, k)? ’}/k—’—j
. k
1,9 €T (¢ —1)(a—3)(a—5) _1)\3
et - asvegsen | g )
1< ] ,ykJri

keT;




Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PDQ(i, k), ,.ykez
. kgai (¢—1)°
ie€Th v g 5 q(¢* = 1)(g—1)
keTy ARG
,ykgi
PD}I(Z k) kpqi -1 2
9 ) ai q
i | -1 @-1)a-1)
. kgi 4
1, ke T2 It
_,Ykgqi
PD3, (i, k) kg —1)2
I ) _~kgai q
o - 1) (= 1a—1)
. kgt 4
1, ke T2 v
,ykgqi
1 . .
PD4(27]7]€)7 Jegai
1€ T V0! (¢—1)%*(g—3) 2 _ _
i ] (¢*=1)(g—1)
jeT htigi
keT;
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Table 2.4 — Continued

Number
Class Order of
Notation of classes
representative centralizer in P
in P
PDZ(Z7j7 k)? ,yk+J9q’L
; k+igi (g—1)*(q—3)
' E T2 ! ,Yk'eqi 4 (q2 - 1)(q - 1)
kels
PDs(i, k), ARGl kg
ki (q—1)°
€ Tt v . , 2 _q
ieTh kg kg 5 q(¢° — 1)
ke T, yr09

2.4.3 Klingen

The Klingen parabolic subgroup @ of GSp(4,F,) is defined as

* X X

Q
Il
* % %

€ GSp(4,Fy)

EE
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Every element g € () can be written uniquely in the form

with A = ad —bc € Iy, t € Iy

g= a b
c d

AN

q

A K
1 %
1 =X

and k,\,u € I';. The order of ) is therefore

q*(¢* — 1)(q¢ — 1)?. The multiplier of g given above is A(g) = A.

The conjugacy classes of the Klingen parabolic subgroup @) are given in the fol-

lowing table.

Table 2.5: Conjugacy classes of the Klingen parabolic subgroup

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k
’Y
QAl(k)a k
T q—1 ¢'(¢* = 1)(g —1)?
keTy v .
~
k
Y
A q—1 ¢*(q—1)?
keTs v .
~
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Table 2.5 — Continued
Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k k
QA%(k)7 ! fyk ! 40 2
. q—1 (" —1)(g—1)
ke T v .
v
k k
QA (k) 7 N ! ,
. q—1 2¢°(¢ — 1)
ke T v N
Y
k k
Y Y
QA3 (k), K K
o7 q—1 ¢*(q—1)
ke T, v .
v
,ykJrl
QA?)Q(k)a k Kk
LA q—1 2¢°(q — 1)
keTs v N
Y
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Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k Ak k
QAs(k), T T 2
k k q—1 ¢°(¢—1)
keTs v _Z
Y
k
-
QBlll(k)a k -1
T = | f@-)a-1?
keT, v )
-
k
Y
QB%I(k)a Ak —1
T = | f@-)a-1?
keT, v )
Y
k
1 Y
QB (k), Ak qg—1 a(q— 1)
_~k 2
keT, v
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Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k
QBgl(k)v ! _,Yk: q—1 3
k 5 qlg—1)
keT, v )
Y
k k
- Y
LA q—1 (- 1)(g—1)
ke T v )
-
k
Y
QB3(k), ok ak
A q—1 ¢*(q —1)?
ke T, - )
Y
k k
- Y
QB (k), k k _
2
keT, v N
-
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Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k 1.k
Y i
QB2 (k)a A~k Ak -1
B R 1 2¢°(q — 1)
— 2
keT, v )
Y
k k
- Y
QB (), N g—1 )
k — 2¢°(q — 1)
2
keT, v i
-
k 1, k+1
Y il
QB,(k), N —— ! q—1 9
K — 2¢°(q — 1)
— 2
keT, v )
Y
k k
vy
7 — q(q —1)?
_~k Ak 2
keT, v Vk
-

5




Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
k k
- =7
QB§1(]€)= —~k qg—1
- —1)2
k 5 q(g—1)
keT, v _Vk
Y
QCiGik). | [
k (g—1)(g—3)
- o lg= g =3) 3
ieTy jour | 5 q(g—1)
kel; rYk—H
QCHik), | (i
bt (¢—1)(g—3)
. ’)/ A N . 1 3
ieTy i k 5 q(g—1)
kel; Y
Q0211<Z’ k)» 'yk
—k (g—1)(g—3)
- o lg= g =3) )
keTy —yF
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Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
Q0221<Z7 k)» fyk"'i
— ki (¢—1(g—3)
. ’7 A N . 1 3
ke T -
QC§1<Z7 k)» —fyk"'i
bt (¢—1(g—3)
. ’7 A N . 1 3
kel Y
QC§1<Z’ k)» —'yk
—yht (g —=1)(g—-3)
. ’y A N . 1 3
kel ’yk—H
1 .
QC3 (Z’ k), fyk —'ykk ( 1)( 3)
) q— q—
1€ T, v ; i -_ qlg—1 2
1 ,yk:+ ,y:+ 2 ( )
keTy e

7




Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
2/ : . .
QO3 (Z, k)a ,yk—i-z ,.yiiz ( 1)( 3)
) v q— 1)lqg—
ke T; ’7k
acib, | [ A s
) +i q— 1)lqg—
ieT) v - — q(q — 1)
ke Ts /Yk
QCE(Z, k), 'yk_l
. kR q—1)(¢g—3
i €Ty v zk L——E——l q(qg —1)°
kel; 7k+i
QCH(i,k), | [+
_ ko Ak qg—1)(qg—3
A I ICELTES ) A
ke Ty yE




Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
QC; (i, k), ,yk+z'
. k q—1)(¢—3
ieTy LA % q(¢* = 1)(g —1)?
7 k
kel; v
QCik), | [
kti (¢—1(g—3)
. ’y A N . 1 3
ieTy - k 5 q(g—1)
kel; Y
QC?(Z? k), 'yk_l
. k q—1)(¢—3
ieTy LA % q(¢* = 1)(g —1)?
Y .
kel; Y w
QCé (27 j7 k)?
k
- gl '
hieh v (9= 1) =3)(a = 5) (q—1)°
o N 5 q
<] ,yk‘+’i+j
kel;
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Table 2.5 — Continued

Notation

Class

representative

Number

of classes

in Q

Order of

centralizer in ()

QC3 (i, 3, k),
i,j e
1<

kel;

k-+itj
k+j
k+i

(¢ —1)(q —3)(qg —5)

8

QCE(i, 4, k),
iaj € Tl
i<j

keTy

k+j

k+i+j
v J

k+1

(¢ —1)(g—3)(¢—5)

8

QCg(/L?]? k)?
iaj € Tl
1<

ke Ty

k+i
k—+i+j

k+3

(¢ —1)(q¢ —3)(qa —5)

8

QD1 (i, k),
1€ Ry

ke Ty

,ykei
,Ykeqi

k+1

(¢ —1)(qg—1)
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Table 2.5 — Continued

Number
Class Order of
Notation of classes
representative centralizer in ()
in Q
QDA k), | [+
kgi (¢—1)°
. y 2 _ _
keTy F
QD6<i) k)a f}/k
. ’ykT]Z (C] - 1)2 2 1 1
ieTy i 5 q(¢* —1)(¢—1)
ke Ty g
Q.Dg(l, k), 'Yk _’Yk
i €T 7 (417 q(¢* — 1)
2 —q
v ) 2
ke Ty

2.5 Negspu

Recall that the subgroup Nggp(4) of GSp(4,F,) is defined as

Neasp) =

—_ 8 ¥

-y
1

81
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Every element g € Nggp4) can be written uniquely in the form

1 1 X pu k

_ 1 z 1 W
9= 1 1A

1 1

with @, k, A\, u € F,. The order of N is therefore ¢*. The multiplier of the matrix
g given above is A(g) = 1. The conjugacy classes of N = Nggp) are listed in the
following table. Note that the notation is slightly different than the standard notation

we have been using for conjugacy classes of subgroups of GSp(4, F,).

Table 2.6: Conjugacy classes of Nggp(a)

Number
Class Order of
Notation of classes
representative centralizer in N
in N
1
1 4
NA,; ] 1 q
1
N AL() !
2 9 1 k
z g—1 ¢
ke Ty .
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Table 2.6 — Continued

Number
Class Order of
Notation of Classes
Representative Centralizer in N
in N
1 k
1 q—1 q
kel;
1
1 . .
NASl(Zaja"i)u 1 ’YZ ,i‘ ,
i.jeTy 1 o o (¢—1) 7
,\/21' _ ,YjK: — ,727L ]- 2
1
for some n € T3
1 Ak
NAZQH (k>7 ]_ 9
L q—1 q
keTs v
1
1 k
NAgl (K>7 ]_ Py '}/k 3
] q—1 q
ke Ty .
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Table 2.6 — Continued

Number
Class Order of
Notation of Classes
Representative Centralizer in N
in N
NAs (1,9 ,
32(27J7K)7 1 ’YZ K/‘ )
i,j € Ts L 47y (g—1° 7
N2 i = 20t 1 2
1
for some n € T3
. 1 9
NA5(%])7 1 ’Y] _,yi+.] (q B 1)2 q2
i,jeTs 1 —171
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Chapter 3

Induced characters

Let C' be a conjugacy class of a group GG. Then the conjugacy class C splits into
distinct conjugacy classes of a subgroup H, say C' = D; U ... U D,. The value of the

induced character is given by the formula

I 00(€) = () = (5 > e

This formula is used to find the induced character values of representations defined
on the Borel, the Siegel parabolic, and the Klingen parabolic subgroups. This will
lead to the complete list of the irreducible non-cuspidal characters of GSp(4,[F,).
This formula is also used to find the character values of the representation G to
determine the genericity of characters. This chapter includes the character tables of
representations induced from B, P, and () as well as the character table of G. If a
conjugacy class of GSp(4,F,) is not listed in the table, the character takes the value

0 on that conjugacy class.
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3.1 Parabolic induction

The conjugacy classes of GSp(4,F,),B, P, and ) have been determined so one can

easily find all of the parabolically induced character values.

3.1.1 Borel

Let x1, X2, and o be characters of the multiplicative group IF*. Define a character on

the Borel subgroup B by

a x * *
P = a@xa®ee).
ca~!

The character of this representation is given by xi(a)x2(b)o(c). This representation
is induced to obtain a representation of GSp(4,[F,), denoted by x1 x x2 x 0. The

standard model of this representation is the space of functions

f:GSp4,F,) — C

satisfying
a * *
f(hg) = x1(a)x2(b)o(c)f(g), forall h = b cb*_l i € B.
-1
ca

The group action is by right translation. The central character of x; X x2 X o is

x1Xx202. The character table of y; X y2 X ¢ is the following.
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Table 3.1: x1 x x2 % o character values

Conjugacy X1 X x2 % o character value
class
A (k) (@ + 1)@+ 1)1 (7" )2 (vF)o (v*")
Az(k) (a+ 1) (")xe (V) (%)
Az (k) (3¢ + Dxa(7")x2(v*) o (+?*)
A (k) (a+ Dxa (" (v (%)
A (k) X1 () xa(v*)o ()
Bu(k) (a+ 120 (M)xa(80(%) (a(-1) + xa(-1))
Bu(k) | 0+ D )e(9o(=2) (14 xa(=Dxa(=1) +xa(-1) + xa(-1)
Bs(k) (a+ Dxa(v)x2(v*)o(v%) (Xl(—l) + X2(—1)>
Ba (k) X1 (P2 (7)o (v?) (xl(—l) + Xz(—1)>
Bua(h) 1(Pe(M)e () (a(=1) + xa(-1)
Ba(k) | xa(M (o= (1+xa(-1x(-1) + xa(=1) + xa(-1))
Ci(i, k) (@ + Dxa(v*)x2(v*)o (v**+) (1 +x1 (e (v) +xa(y') + X2(’Yi)>
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Table 3.1 — Continued

Conjugacy
X1 X X2 X o character value
class

1 (MPe(M)e (=) (a(=1) + xa(-1)
Con (i, k) +xa(=Dxa(=1)(xa(v) + x2(+))

+ (a1 + (D) +at) +xe0)

Ci (i, k) ()Mo (14 (e (r) + () + e 0)
Ci(i k) 1(MPe()e() (a ) + () + e +xe()
Cs (i, k) (a+ 1)xa(v)x2(v*)o (v*) (xl(vi) +x1(77) + x2 () + XQ(W')>

X1 (Y )x2(7F) o (v?FHH9) (Xl(vi) +x1(77) + x2(v) + x2(¥7)

Cﬁ(ia 7k) S . . L . .
! F ) a0+ x(P) + X0 (a ) + (7))

3.1.2 Siegel

Let (m, V) be an irreducible representation of GL(2,F,), and let ¢ be a character of

F7. Define a representation of the Siegel parabolic subgroup P on V' by

— o(c)m(A).
cA

The character of this representation is given by o(c)x.(A), where x, is the character

of 7. This representation is induced to obtain a representation of GSp(4, F,), denoted
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by m x 0. The standard model of this representation is the space of functions

f:GSp(4,Fy) —V

satisfying

A %
f(hg) =o(c)m(A)f(g), forall h = S

cA’

The group action is by right translation. If 7 has central character w,, then the

central character of ™ x ¢ is w,0?. The character table of m x ¢ is the following.

Table 3.2: 7 x o character values

Conugacy 0 chasacter value
clas
A @+ D+ o)
() @+ o6 ))
A (k) o) (" )+ 2T ))
Aslh) o))
As(h) (7 K))
B (k) 0ot )
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Table 3.2 — Continued

Conjugacy m X o character value

class

Bis(k) (q +1)a(72’““)><7r((7k / . /))
i (= )(X ((7k ,yk)):‘X ((_7 _7))

(7))

Bas(k) (q+1)o(—y )Xw((vk/ . />)
By(#) @+ ot L))
Ba(k) ol (7))

Balk) ol (7))

Bys(k) oy )Xﬂ<(7k+1/2 _7k+1/2>)
Bya(k) oy )Xw((vk : _7k+1/2>)
Ba) | ot (ul(T (" (7 L))
Bss (k) o(—y 1)Xw(<7k+/ _ /))
. o7 (el (7 (7))




Table 3.2 — Continued

Conjugacy m X o character value
class
| ol (T )
e wol (7 7,cﬂ-))zxa(7 W);)
| o(—y2ritt )(Xw((vkﬂﬂ B k+1/2))
e ()
cxtih) | o6 (ul(T ANl (7))
Cili.H) o) (el (7 )+l (7))
36 b @+ 000wl (7 el (7))
N oy )(x (<7k k+i))+X ((7 ))
s +X ((7 'y +i+j):/+ Xw((vk ,),k—i-:/&-J)))
Dy (i, k) (q+1)a(72’“+")xw((7ke N ))
Dy (i, k) o(—y )(X ((7 f 7169@,1’))%—)( (<_7 f . )))
Diicich) | o ) (T a7 )
Ds (i, k) a(y )xw((wi Ny ))

91




3.1.3 Klingen

Let x be a character of I ¢, and let (7, V') be an irreducible representation of GL(2, I ).

Define a representation of the Klingen parabolic subgroup ) on V' by

t x % *
Ca T on(¢G)) wherea —ad e
At~1

The character of this representation is given by x (¢)xx( (OCL Z) ), where Y is the char-
acter of 7. This representation is induced to obtain a representation of GSp(4,F,),

denoted by x x m. The standard model of this representation is the space of functions

f:GSp(4,Fy) —V

satisfying
t *x x
b a b *
g =xtm((2 G, wrarn=| 04T |ea
At1

The group action is by right translation. If m has central character w,, then the

central character of y x 7 is yw,. The character table of y x 7 is the following.

Table 3.3: x x 7 character values

Conjugacy
x X 7 character value
class
2 k o
A @+ D+ OO )
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Table 3.3 — Continued

Conjugacy X X 7 character value

clas

Al0) (") et ol (T 4))
A (k) 20 (et (" )+ (L))
Awlh) a+ 0xe (L))

A (L)

) |+ (0T (7))
Ba (k) D (1 D)l )
Bl | o o7 L))
Bu(k) (T ) (T )
Bulk) O (0l (78 L))
B (k) (a0l )

Ci(i.) @+ Dx0 (1 x0T ae)
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Table 3.3 — Continued

Conjugacy
x X 7 character value
class
, k
(00 x0T )
Cor (7, k)

(T )

Cs(i, k)

k

(1)l (7))

Cy(i, k)

)
A () +X(v‘i))xn((vk ,ylk)) +Xw(<7k+i 7zm)))

Cs(i, k)

(060 x (" N+l ))

k+i

DI (CE PO | (LY )

Cs(i, j, k) \ 7
: +(><(7")+><(vj))><7r((7 ,yk—&-i—l-j)))
D k) NCOICRCE) N G §
Dy(i. ) (q+1)x(7'“)xw((7kni an_i)
D) (7))
32 G

The character table of G is the following.
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Table 3.4: G character values

Conjugacy
g character value
class
Ai(g—1) (¢' =1 -1(g—1)
As(q—1) (¢ = 1(g—1)
Azi(g—1) —(¢#=1(¢g—1)
Az —1) —(¢* = 1)(g—1)
As(qg—1) q—1

We compute (xg, xg) = ¢*(¢—1). So the number of irreducible generic representations
of GSp(4,F,) is less than or equal to ¢*(¢—1). It turns out, as we will soon see, that

there are exactly that many such representations.
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Chapter 4

Irreducible characters and

cuspidality

We now determine all of the irreducible characters of GSp(4,F,) and determine if
they are cuspidal or non—cuspidal. The complete list of irreducible characters of
GSp(4,F,) is obtained from the results in [I4] and [4]. After this list is given, we
determine the irreducible non—cuspidal characters, i.e., the irreducible constituents of
the characters induced from irreducible characters of the Borel, Siegel, and Klingen

parabolic subgroups.

4.1 Irreducible characters

All of the irreducible characters of Sp(4,F,) were determined by Srinivasan in [14].
Her list of characters can be used to determine all of the irreducible characters of
GSp(4,F,). A complete list of irreducible characters of GSp(4,F,) will help to de-
termine the irreducible constituents of the parabolically induced irreducible cuspidal

representations defined on the Borel, Siegel, and Klingen parabolic subgroups. It can
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then be said precisely which characters of GSp(4,F,) are irreducible cuspidal and
which are irreducible non—cuspidal.

We have the following useful result from [4]. Let H be a subgroup of index 2 in a
group GG. Then H is a normal subgroup of G and G/H is a group of order 2. Let U
and U’ denote the trivial and non-trivial representations of GG, respectively, obtained
from the two representations of G/H. For any representation V of G, let V! =V U'.
The character of V' is the same as the character of V' on elements of H, but takes
opposite values on elements not in H. In particular, ResgV’ = RestV. If W is any
representation of H, there is a conjugate representation defined by conjugating by
any element ¢t € G such that t ¢ H; if ¢ is the character of W, the character of the
conjugate is h + (tht™!). Since t is unique up to multiplication by an element of

H, the conjugate representation is unique up to isomorphism.

Proposition 4.1.1. Let V be an irreducible representation of G, and let W = ReSgV
be the restriction of V' to H. Then exactly one of the following holds:

(1) V is not isomorphic to V'; W is irreducible and isomorphic to its conjugate;
mdSW =V e V.

V=V W=WaeW" where W and W" are irreducible and conjugate but
not isomorphic; IndGW’ = IndGW” =2V,

Fach irreducible representation of H arises uniquely in this way, noting that in

case (1) V and V' determine the same representation.

The irreducible characters of GSp(4,F,) are determined as follows. Each irre-
ducible representation of Sp(4,[F,) is extended to a representation of GSp(4,I,)™,
where GSp(4,F,)" := Z- Sp(4,F,). Note that GSp(4,F,)" is an index two subgroup
of GSp(4,F,) and that Z N Sp(4,F,) = £I, where I is the identity of GSp(4,F,).

For an irreducible representation 7 of Sp(4, F,), an irreducible representation 7+ of
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GSp(4,F,)* is constructed by defining 77 (2 - g) := a(z)7(g), where « is a character
of Z, hence a character of . By Schur’s Lemma, elements of Z act as scalars on
vectors in the space of w. To ensure that this new representation is well-defined, it
is required that a(+1) acts as w(£I) on the space of m. The character of this new
representation is a(z)x,(g), where x, is the character of 7. This representation is
then induced to GSp(4,F,). The induced representation is either irreducible or has
precisely two irreducible constituents.

The group GSp(4,F,)" only has elements with square multipliers and so the
induced character takes the value 0 on the non-square multiplier classes of GSp(4, IF,).
If the induced character decomposes into two constituents, then the sum of the values
of the constituent characters on the non-square multiplier classes is 0. The values of
the constituent characters on the square multiplier classes are half the values of the
induced character on those classes.

Fix an isomorphism of ]qu4 into the multiplicative group C* and write the images

of v, 0, n, k respectively as 7, 0, 7, k. Define

1
t=-(qg—1
2(q )7

The table below lists all of the non-trivial irreducible characters, the value of
a(—1), notation for the irreducible constituents of the induced character, and the
dimension of each constituent. In the cases where the induced character decomposes,
say into x, and xp, we have that x;, = {xa, where § : F* — C is the character defined

by £(7) = —1. Genericity of a character is indicated by a e in the “g” column.
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Table 4.1: Irreducible characters of GSp(4,F,)

Character a(—1) Constituents Dimension
Ind(ax(n)) Ind(ax1(n))a (¢ = 1)°
n € Ry (—1)”
Ind(axi(n))y | (¢* —1)*
Ind(axa(n)) Ind(axa(n)), ¢t —1
n € Ra (—1)” 4
Ind(axa(n))s ¢t —1
Ind(axs(n,m)) Ind(axs(n,m)). | (¢*+1)(g+ 1)
n,meT,n#m (—1)n+m
Ind(axs(n,m))y | (¢ +1)(g+1)?
Ind(aya(n, m)) Ind(aa(n,m))a | (¢ + 1)(g — 1)
rrete e O vt m | @+ Dia— 1
Ind(axs(n, m)) Ind(ays(n,m)), | ¢* —1
neTy,meT; —1)ntm
- Ind(ayxs(n,m)), | ¢* —1
Ind(axs(n)) Ind(axs(n))a (¢ +1)(g—1)
n € Th 1
Ind(axs(n))s (@ +1)@—1)
Ind(ax7(n)) Ind(axz(n))a ¢(¢® +1)(q—1)
n €1z 1
Ind(axz(n))y | q(¢® +1)(g— 1)
Ind(avxs(n)) Ind(axs(n))a (@ +1)(g+1)
n €Ty 1
Ind(axs(n))s (> +1)(qg+1)
Ind(axo(n)) Ind(axg(n)), q(¢* +1)(g +1)
n €Ty 1
Ind(axe(n))y 9(¢® +1)(g+1)
Ind(as (n)) md(e&m) | (@ +1)g—1)
n €1y —-1)"
Y Ind(ag1(n))s (> + (g —1)
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Table 4.1 — Continued

Character a(—1) Constituents Dimension
Ind(a&}(n)) Ind(agf(n))a a(¢* +1)(g - 1)
o Y Ind(ag; (1)) q(q* +1)(g— 1)
Ind(aéai(n)) | (=1)""" | Ind(aéa(n)) ¢t =1
Ind(agy, (n)) | (=1)"**" | Ind(agy, (n)) (¢® +1)(q — 1)?
Ind(aés(n)) Ind(as(n))a (@ +1)(g+1)
nem 1"
Y Ind(as(n))s (¢*+ g +1)
nd(aty(n)) (&) | ala®+ Dig+1)
- T i, |+
Ind(eéau(n)) | (=1)"" | Ind(agu(n)) (¢* +1)(g+1)?
Ind(agj;(n)) | (=1)"**" | Ind(ag) (n)) ¢t -1
Ind(a®,) (=) | Ind(ad,) (*+1)(g—1)
Ind(a®;) (=D | Ind(a®s) q(®+1)(g—1)
Ind(a®s) (-1t | Ind(a®s) (> +1)(g+1)
Ind(a®;) (=1t | Ind(a®;) q(¢®>+1)(qg+1)
Ind(ady), q(¢®> +1)
Ind(ady) 1
Ind(a®dy), q(*+1)
Ind () 1 Ind (b)) (¢ +1)




Table 4.1 — Continued

Character a(-1) Constituents Dimension
Ind(afs) 1 Ind(afs) ¢ +1
Ind(afs) -1 Ind(afs) ?(g*—1)
Ind(aby) -1 Ind (b)) ¢ -1

Ind(aby), 5q(q+1)?
Ind () 1

Ind(aby), sa(q+1)?

Ind(abio)a %Q(q - 1)2
d(@fw) : Ind(abo)s %C](q - 1)2

Ind(afy), La(® +1)
tnd{adu) ! Ind(af)s La(g® +1)

Ind(afi2), 30(@® +1)
tnd(athz) Y d(atu), Lo+ 1)

Ind(ab3)q q*
Ind(ab3) 1 Ind(afha), /

There are (¢? +2q +4)(q — 1) irreducible characters and ¢*(q — 1) irreducible generic

characters.

4.2 Irreducible non—cuspidal representations

Before the list of the irreducible non—cuspidal characters is given, we first give parts of
the character tables of some irreducible non—cuspidal constituents oInd(6, ), oInd(6s),
Ind(§wxb5), Ind({w.b7), olnd(fy), olnd(hy1), olnd(fi3), Ind(w,Py), Ind(w,P3),

Ind(®yg), 0Stasp) := oInd(013)a, and olggpa).
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Table 4.2:

oInd(xe(n)) character values

Conjugacy class oTnd(xs(n)) character value

Au(k) 2¢? + D(g — Do(v*)

Aslk) 2(q — Do)

Aui (k) —20(7%)

Asza (k) 2(2g — 1)o(4?)

As(k) —20(7*")

Put®) 21y~ 1%0(1™)

By (k) 0

Baulk) (14 (=1))(a ~ Do(—*)
Baa(k) (1= (=1))(q — 1 = B2 n))o(—*+1)
Bt 2(-1)"(a ~ V(1)

Bu(k) 21 (7%)

Bua(k) 2(~1)" o ()

Bus(k) 0

Bua(k) 0

B (k) —(1+ (-1))o(—7)

Bsa(k) —(1 = (~1))(B(n) + Do(—+)
C1(i, k) (14 (=1)1)(q — D)o (y2+)
i (i, ) 0
Caa(1, k) —2(1 — (=1)")B(Lin)o (—y2tit)
Ca(i.F) —(1+ (-1))o ()

Cu(i, k) 0

C5(i, k) 0
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Table 4.2 — Continued

Conjugacy class

olnd(xe(n)) character value

Ce(i, j, k) 0
Dy (i, k) (14 (1)) (g — 1 — B(in))a ()
D i ) “2(1+ (—1)*)B(im)o(— )
Dale 3, b) ~2(1+ (~ 1)) (in)o (y2+%9)
Ds(i, k) —(1+ (=1)")(B(in) + Do (y*+)

Table 4.3: oInd(x7(n)) character values

Conjugacy class

oInd(x7(n)) character value

Ay (k) 2q(¢ — 1)(¢* + 1)o(v*)
Az (k) 2q(q — 1)o(+*)

Az (k) —2q0(y*")

Asa(k) —2q0(y*")

As (k) 0

B (k) 2(=1)"(q = 1)%a(y*")
By (k) 0

By (k) (14 (=1)")(g — Do (")
B (k) (1= (=1)")(1 — g — gB(%=n))a (=)
B (k) 2(=1)"(1 = g)o(v**)
Bui (k) 2(=1)"a(v**)
Bya(k) 2(=1)"a(y*")
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Table 4.3 — Continued

Conjugacy class

olnd(x7(n)) character value

Buys(k) 0

By (k) 0

B (k) (14 (=1)")o (=)
Bs>(k) (1= (=1)")o(—*)

Ci(i, k) (14 (=1)")(g = Da(y***)
Ca (i, k) 0

Caa(1, k) —2(1 — (=1)")B(Lin)o (—y2tit)
Cs(i, k) —(1+ (1)) (")

Cu(i, k) 0

Cs (i, k) 0
Ce(i, J, k) 0

Do(i, k) (14 (=1))(1 = g — gB(in))a (y***)
Dsi(i, k) —2(1 + (=1)*)B(in)o (—y2+)
Dy(i, j, k) —2(1 + (=1)"9) B(in)o (2 +i+7)
D5 (i, k) (1+ (=1)")a(y**7)

Table 4.4: oInd(w,®;) character values

Conjugacy class

olnd(w,®;) character value

A(k)

(¢* + 1)(qg — Dw<(v*)o(v**)

Ay (k)

—(¢* — g+ Dw(v*)o (v*")
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Table 4.4 — Continued

Conjugacy class

olnd(w,®;) character value

Az (k) (¢ = D (7)o (v*F)
Asz(k) (¢ — Dwz (7)o (v*")
As (k) —wr (7)o (v**)
Bu(k) (¢ = D+ (=1 wr(v*)a(y**)
Boy (k) 0
By (k) (q+ (=1)" = Dwz(v")a(v**)
Bui (k) ((=1)" = Dwx(v")a (v?*)
Bz (k) (=1 = Dwr(v*)o(+**)
B (k) 0
Cy(1, k) 0
Co (3, k) 0
Cs(i, k) 0
Cu(i, k) ~wr (7)o (v?)
Cs(i, k) (¢ = Dwr(v*)o(v*")
Ce(i,7, k) 0
D (i, k) (14 (=1))wr (2o (y*++7)
Dg(i, k) (g + Dwx(v")a(v*")
Ds(i, k) wr(7*)a (v*F)
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Table 4.5: oInd(w,;®3) character values

Conjugacy class oTnd(w;®3) character value
Ay (k) (> + 1)(q — Dw(7*)o(**)
Ay (k) —qur (7)o (v?)

Az (k) 0

Asz(k) —2qw=(Y*)a (v*)

As (k) 0

Bu (k) (g — D1+ (=) Hwr(v*)a (v**)
Bo (k) 0

Bs(k) ¢(=1)'wr(v*)(v?*)

B (k) 0

Bya(k) 0

Bs (k) 0

Cy(1, k) 0

Co (3, k) 0

Cs(i, k) 0

Cu(i, k) —wr (7)o (7?)

Cs(i, k) (g = Dwr(v*)o(v*")
Co(i, j, k) 0

Dy (i, k) (14 (=1))wr (2o (y*++7)
Dg(i, k) (g + Dwx(v")a(v*")
Ds(i, k) wr(7*)a (v*F)
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Table 4.6: oInd(®gy) character values

Conjugacy class

olnd(®g) character value

Ay (k) 2q(q* + 1)o(v*)

Ay (k) 2qo (*F)

Az (k) 2qo (*F)

Asa (k) 2qo(*")

As (k) 0

Bui(k) 2(=1)"(¢* + Do (v**)
Bo(k) (L4 (=1)") (g + Do (=)

Bs(k) 2(=1)'a(v*")

Bu (k) 2(=1)'o(v**)
Bis(k) 2(=1)to(v**)
Bs1(k) (14 (=1)")a(=7**)
Ci(i, k) 1+ (=19 (g + a(v***)
Con (i, k) 2((=1)" + (=1)")o(=**)
Cs(i, k) (14 (=1)")a(y*+)
Cu(i, k) 2(=1)'o(y*")

Cs (i, k) 2(=1)"(qg + 1) (y*")
Co(1, 7, k) 2((=1)" + (=1))a(y**+)
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Table 4.7: oInd(6;) character values

Conjugacy class

oIlnd(#,) character value

A1 (k) ¢*(¢* + 1o (™)

Aa (k) ¢o(7*)

Asi (k) 0

Asa (k) 0

As (k) 0

Bu (k) 2(=1)'qo (y*")

Ba (k) (L4 (=1))go (=)

B (k) (=1)'qo(v**)

Bu (k) 0

Bua(k) 0

Bs1(k) 0

Ci(i, k) (14 (=1)")go(y***)
Car (i, k) ((—1)"+ (1)1 (—+7)
Cs(i, k) 0

Ca(i, k) (—Dio(y%)

Cs(4, k) (=D(g + L)a(v**)
Co(1, 5, ) ((=1)" + (=1)7)a (2447
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Table 4.8: oInd(f3) character values

Conjugacy class

olnd(f3) character value

A (k) (¢ + Do (7**)

Ax() o(7%F)

Az () (q+ Lo(y*)
Azz(k) (1= q)a(*)

As(k) (%)

Bu(k) 2~1)'g0(r*)

Ban (K) (1+(=1))a(=7*)
Ba(k) (~1go(2)

B (k) 0

Bua(k) 0

B (k) (1+(=1))a(=7*)
Cu(i. k) (1+ (~1))o(2+)
Cni.b) (1) + (=1))o(—4*+)
Csli, k) (1+(=1))a(y*+)
Cali, k) (-1)io(r**)
Co(i.F) (~1)(a + Dolr™)
Co(i, g, k) (=1 + (=1))a(y?*77)
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Table 4.9: oInd(§wx05) character values

Conjugacy class oTnd(éws05) character value

Ay (k) ¢*(¢* = DE")w (7)o (v*F)

A (k) —* (Y )wr (7F)a (v*F)

Az (k) 0

Aso (k) 0

As (k) 0

By (k) 0

Bay (k) 0

Bs (k) (—1)'q€(v*)wr(v*)a (v*")

B (k) 0

Bus(k) 0

Bs (k) 0

O\ (i, k) 0

Co (3, k) 0

Cs(i, k) 0

Cu(i, k) (=D )wr () (v?)
Cs(i, k) (¢ = V(=1 €("wr(v*)(v?*)
Co(i, j, k) 0

Dy (i, k) —(L+ (1)) ) wr (FF2) o (y2+F7)
Dg(i, k) —(g+ D(=1)¢(v*)wr (") o (v**)
Dy (i, k) (=D )wr () (v7F)
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Table 4.10: oInd(§w,07) character values

Conjugacy class oTnd(€ws07) character value

Ay (k) (¢* = DEO")wa(v")a (%)

Az (k) —&(Y)wr(7F)a (%)

Az (k) (¢ = DEOM)wr(vF)o (v7F)

Az (k) —(g + DEO")wr (V) (v?*)

As (k) —E(7F)wr (7)o (%)

By (k) 0

Bay (k) 0

Bs (k) (—1)'q€(v*)wr(v*)a (v*")

B (k) 0

Bus(k) 0

Bs (k) 0

O\ (i, k) 0

Co (3, k) 0

Cs(i, k) 0

Cu(i, k) (=D )wr () (v?)
Cs(i, k) (¢ = V(=1 €("wr(v*)(v?*)
Col(i, j, k) 0

D (i, k) —(L+ (1)) ) wr (FF2) o (y2+F7)
Dg(i, k) (g + D(=D)"E(P)wr(vF)o (%)
Ds(i, k) (=D )wr () (v7F)
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Table 4.11: oInd(fg) character values

Conjugacy class

olnd(fy) character value

A (k) 4(q +1)%0 (%)
Aa(k) q(q +1)o(+*)

Az () 290 (")

Aso (k) 0

As (k) 0

Bu (k) (q+1)%0 (%)

Boi (k) (L4 (=1)") (g + Do (=)

Bs (k) (q+ 1o ()

Bu (k) (q+ Do(y*)
Bax(k) (1= q)o(+*)

Bs1 (k) AL+ (=1)")a (=)
Ci (2, k) (14 (=1))(q + 1o (y?+)
Con (i, k) 2(1 4 (—1)) g (—y2+)
Cs(i, k) (14 (=1)")a(y*+)
Cali, k) 20 ()

Cs(i, k) 2(g + 1)o(v**)
Ce(i, 7, k) 2(1 + (—1)i*) g (y2+i+)
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Table 4.12: oInd(611) character values

Conjugacy class

oInd(611) character value

Ay (k) (> + o (v**)
Ay(k) q(1—q)o(y*")

Az (k) 2qo (*F)

Aso (k) 0

As (k) 0

Bu (k) (¢* +2q — 1)o(v*")
B (k) (14 (=1)")a(=7**)

Bs(k) (¢ — Do (v*)

By (k) —(g+1)o(v*")

By (k) (¢ = Da(y*)

Bz (k) (14 (=1)")a(=7**)
Ci(i, k) 1+ (=1))a(y***)
Con (i, k) (14 (=)o (—7**)
Cs(i, k) (14 (=1)")a(y*+)
Cu(i, k) 0

Cs (i, k) 2qo (v*")
Co(i, J, k) (14 (=1)"9)a(y2+47)
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Table 4.13: oInd(f12) character values

Conjugacy class

oInd(f12) character value

Ay (k) (> + o (v**)

Ay (k) q(qg + o (v*")

Az (k) 0

Asz(k) 2q0 ()

As (k) 0

Bu (k) —(¢* = 2¢ = Do (v**)
B (k) (1 + (=1)")a(=7**)

Bs(k) (g +o(y*)

Bui (k) (1= q)o(+*)

By (k) (q+Da(v*)

Bs1 (k) 0

Ci (i, k) (1 + (=1))o(y*+)
Con (i, k) (14 (=)o (—7**)
Cs(i, k) 0

Cu(i, k) 20(7*")

Cs(i, k) 20 (v*F)
Co(i, J, k) (14 (=1)"9)a(y2+47)
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Table 4.14: oStggp(4) character values

Conjugacy class

oStgsp(a) character value

Ay (k) ‘o (%)
Ay (k) 0
Az (k) 0
Aso (k) 0
As (k) 0
Bui(k) ¢ (")
By (k) 3(L+ (=1)")go (=)
Bs(k) 0
By (k) 0
By (k) 0
Bs (k) 0
Ci(i, k) 3(L+ (=1)")go(y*+)
Can (i, k) 3(L+ (1)) (—2+)
Cs(i, k) 0
Cy(i, k) 0
Cs (i, k) qo (v*")
Ce(i, J, k) s(L+ (D)™)o (1)
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Table 4.15: o1ggp(4) character values

Conjugacy class olgsp() character value
A(k) a(v*")
As (k) a(y*")
Asi (k) o ()
Asa (k) a(v**)
As(k) a(v?*)
By (k) o(v*)
Boi (k) o(—%F)
Bs(k) a(y*")
By (k) a(v?*)
Bua (k) a(v*")
Bs1(k) o (=)
Ci(i, k) o (y***)

Can (i, k) (=)
Cs(i, k) a(y**)
Cu(i, k) a(v?*)
Cs (i, k) a(v*")
Ce(i, J, k) o ()

The following table contains information on the irreducible non—cuspidal repre-
sentations of the group GSp(4,F,). The format of the table is intentionally similar

to a table in [I1] with information on the irreducible, admissible, non—supercuspidal
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representations of GSp(4, '), where I is a non-archimedean local field.

Representations in the same group, denoted by a roman numeral, are constituents
of the same induced representation. The group notation IV is not present. Since we
are following the format of the related table in [I1], we have tried to keep the group
notations consistent. The representations associated to those given in the groups IV
and VI in [T1] are combined in the group IV*. The “g” column in the table indicates
whether a representation is generic. We remark here that in the table the irreducible
constituents are sometimes written as twists of an irreducible character rather than
in the form that is in the table of irreducible characters above. For example, the Va
constituent is written as oInd(6;), where 6, is an irreducible character of Sp(4,F,)
which is extended to GSp(4,F,)" using the trivial character on the center, induced
to GSp(4, IF,), then twisted by the character 0. This constituent can also be written
as Ind(c?6;). The other such constituents can be written using the notation in the
irreducible character table similarly.

Group I. These are the irreducible representations obtained by parabolic induction
from the Borel subgroup. More precisely, they are irreducible representations of the
form x; X x2 X o, with x1, x2, and o characters of I'. Representations of this form
are irreducible if and only if y; # 1F;>X2 #* 1qu and x; # X3', where 1qu is the
trivial character of .

Group II. Let x be a character of I with X2 # L. Then the induced represen-

tation y X x X o decomposes into two irreducible constituents
ITa : xStarey X o and  IIb: xlgre) % o,

where Stqr,2) denotes the Steinberg representation of GL(2, Fy) and 1¢y,(2) denotes the
trivial representation of GL(2,IF;). Star(2) and lgr(e) are obtained as the irreducible

constituents of the induced representation Ipx X lpx of GL(2,F,).
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Group III. Let x be a character of I} such that y # L. Then x x lpx X0

decomposes into two irreducible constituents
Ila : x X oStaspey  and  IIb: x X olggpe),

where Stggp(2) denotes the Steinberg representation of GSp(2, F,) and lasp(e) denotes
the trivial representation of GSp(2,Fy). Stgspz) and lggp2) are obtained as the
constituents of the induced representation Lpx X 1px of GSp(2,F,).

Group V. Let § be a non-trivial quadratic character of F. Then £ x § x o

decomposes into four irreducible constituents

Va: olnd(f;) Vb: olnd(®y),
Ve: olnd(®g),  Vd: olnd(6s).

Group VI*. 1px x 1px X o decomposes into six irreducible constituents
q q

VI*a: 0Stggpay  VI*b: olnd(6g),
VI*c: olnd(6y), VI*d: olnd(611),
VI*GZ O'Ind(elg)a VI*f UlGSp(4)7

where Stgspa) = Ind(6:3) is the Steinberg representation of GSp(4,F,) and lggpa) is
the trivial representation of GSp(4,IF,).

Group VII. These are the irreducible representations of the form x x m, where
7 is an irreducible cuspidal representation of GL(2,[F,) and x is a character of .
Representations of this form are irreducible if and only if x # 1qu and x # £, where
¢ is a character of order 2 such that {7 = 7.

Group VIII. Let m be an irreducible cuspidal representation of GL(2,F,) with

central character w,. Then 1x X 7 decomposes into two irreducible constituents
q

VIIla: Ind(w,®3) and VIIIb: Ind(w,Py).
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Group IX. Let § be a non-trivial quadratic character of F and let m be an
irreducible cuspidal representation of GL(2,F,) with central character w, such that

ém = . Then € x m decomposes into two irreducible constituents

[Xa: Ind(éw,05) and IXb: Ind({w,07).

Group X. These are the irreducible representations of the form m x o, where =
is an irreducible cuspidal representation of GL(2,IF,) and o is a character of I
Representations of this form are irreducible if and only if 7 does not have trivial
central character w,.

Group XI. Let  be an irreducible cuspidal representation of GL(2, IF,) with trivial
central character w, and let o be a character of ;. Then m x o decomposes into two

irreducible constituents

Xla: olnd(x7(n)), and XIb: olnd(xs(n)),-

Table 4.16: Irreducible non—cuspidal representations

Constituent of | Representation Dimension
I X1 X x2 X o (irreducible) (> +1)(g+ 1)
- XXX X0 XStare) @ o | a(@®+1)(g+1)
(x*# 1) Xlore) % o (> + (g +1)
111 XX lpx xo X % 0Staspe) | ald® +1)(¢+1)
(x#1) X olespe) | (7 +1D(g+1)
olnd(6,) *(g®+1)
v EXEXo olnd(®g), q(¢* +1)
(£=1,86#1) oInd(®9)s q9(¢* +1)
olnd(63) ¢ +1
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Table 4.16 — Continued

Constituent of | Representation | Dimension
oStasp(4) qt
olnd (). 3a(q +1)°
oInd(fy)a 5a(q +1)°
VI* 1F; X 11qu X o oInd(01,), %q(q2 )
olnd(015), %q(q2 +1)
olasp( 1
VII x x 7 (irreducible) gt —1
VI o 6 Ind(w,®3) a(¢® +1)(¢— 1)
' Ind(wx®1) (> +1)(¢—1)
x Exm Ind(§wrb5) (> — 1)
E#1L Er=m) Ind(€wr0-) ¢ -1
X mx o (irreducible) ¢t —1
- TXO olnd(x7(n))a | a(¢®+1)(¢—1)
(wr=1) olnd(xs(n))a | (¢ +1)(g—1)

The induced representation y; X x2 X ¢ is irreducible if and only if x; # 1, x2 # 1,

and x1 # X3 -
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Several formulas are used in the proof of this table. In particular, they are used

to establish reducibility criteria and to verify that a particular representation is a

constituent of a non—cuspidal group of representations. Define

0 if x1#1 0 if xyo #1
Zl— 22:

g—1 ifxy;=1 qg—1 ifxya=1

> >

0 if Y1 # X" 0 if xo # X3
Z3: 24:

>q—l if x1 = 1" >q—1 if x2 = x5

0 if 2 # x1 0 if X2 # X1
5 = 26 —

>q—1 if x2 =x1 k(1—1 if xo # X7

0 if ¢[y #1
7 =

q+1 if¢|<n>:

\

Lemma 4.2.1. Let x1, x2 : Fy — C be characters. Then

ZXl

€T

)+ x1(y ):Zl—l—Xl(—l)

)+ x1 (v () =2 — 1 — xa(—=1)x2(-1)

ZXI

€Ty

ZXI

€Ty

)+ x1(Y 7 Ix2(7) = 25 — 1= xa(=1Dxa(—1)

D G +xaly

€Ty

71’)2 = Z3 —2

121



Y a6 ) + a6 ) +xa ()
1,J€T1,i<j

((z21 = x1(=1) = 1)* = z3 — ¢+ 5)

N | —

Y alt) +xa(rmN0e() + xe()

1,j€T1,i<j

_ 1 T (25— 2a(=Dxa(=1) —2)

i —i j —j q—>9
> at) a6 Hald) Fat) = 52 - 1= a(-1)
1,J€T1,i<j
A B . » -5
> a0 Fab ) =1 (- 2)
1,J€T1,1<]
Proof: Straightforward. ]

Now we prove the assertions in the above table of irreducible non—cuspidal repre-
sentations.

Proof: The irreducible non—cuspidal representations are supported in the Borel,
the Siegel parabolic, or the Klingen parabolic. We first consider those supported in
the Borel.

Borel: Let x1, x2, and o be characters of F. As in m, these characters are
used to define a representation of the Borel subgroup and induced to GSp(4,F,) to

obtain the representation x; X x2 X . From its character table, we have

X1 X X2 X0 = X2 X X1 X 0.

We also have

(x1 X x2xo0, xg) =1
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for all such representations y; X y2 X o, indicating that exactly one irreducible con-

stituent of y; X x2 X ¢ is generic. Also,

P+ (25 +26—2)q+ 1+ 27 +22120 + 2% — 25 — 26 + 252
(X1 XX2X0, X1 X X2X0) = (q— 1)

(4.1)
which has precisely four possible values: 1,2,4,8. Equation is equal to 1, or,
equivalently, x1 X X2 % o is irreducible, if and only if x1 # 1, x2 # 1, and ya # x5

Equation [4.1]is equal to 2 if one of the following holds:

Lxi#xih xa=x1"

2. x1 #xfﬂ X2 = X1
XiE X x2=1
xi=xihxi#ALxe=1

-X1=17X27AX51

S Ot s W

x=Lxe=x' xe £ 1

Equation is equal to 4 if and only if x; = x2, X2 Z 1, X1 = X1 "

Equation {4.1]is equal to 8 if and only if x; = 1 and y, = 1.

Using the character inner product, the constituents in groups II-IV* can be veri-
fied.

Siegel: Let o be a character of ;' and let 7 be an irreducible cuspidal represen-
tation of GL(2,F,) with central character w,. As in 7 define a representation of
the Siegel parabolic subgroup and induce to GSp(4,F,) to obtain the representation

7 X o. We have

(WNO-7XQ):1
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for all such representations 7 x ¢, indicating that exactly one irreducible constituent
of m x ¢ is generic.

The sum of the dimensions of the irreducible constituents of 7 x o is ¢*—1. If T x0o
is reducible, then by dimension considerations, the possible irreducible generic con-
stituents are Ind(axi(n))., Ind(axi(n))y, Ind(axs(n,m))., Ind(axs(n,m))s,
Ind(ax7(n))q, Ind(axz(n))p, Ind(a&i(n))q, Ind(a&i(n))s, Ind(agh,(n)), Ind(ads), and
Ind(abs).

By adding character values, if 7 x o is reducible then it has precisely two irreducible

constituents, w, is trivial, and

7w x o =olnd(x7(n)). + olnd(xs(n))q

for some n € Ts.

Klingen: Let x be a character of F* and let 7 be an irreducible cuspidal representa-
tion of GL(2,F,) with central character w.. As in[3.1.3] define a representation of the
Klingen parabolic subgroup and induce to GSp(4,F,) to obtain the representation

x X m. We have

(XX]T(’XQ)Zl

for all such representations y x m, indicating that exactly one irreducible constituent
of x x 7 is generic.

The sum of the dimensions of the irreducible constituents of y x 7 is ¢* — 1.
If x x 7 is reducible, the possible irreducible generic constituents are Ind(axi(n)),,
Ind(axi(n))y, Ind(axs(n,m))e, Ind(axs(n,m))y, Ind(axz(n))., Ind(axz(n))s,
Ind(a&i(n))a, Ind(a&](n))s, Ind(alby(n)), Ind(ads), and Ind(abs).
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By adding character values, if y X is reducible then it has precisely two irreducible
constituents and either

(1) x is trivial and
1qu x 7 = Ind(w,P3) + Ind(w,Py)
or (2) x = & with £ # 1 such that & = 7 and

¢ x 7 = Ind(§w.b05) + Ind(Ew-07).

4.2.1 Decompositions for types V and VI*

We will now give more detailed descriptions of the decompositions of the non—cuspidal
representations supported in the Borel subgroup for types V and VI*. These decom-
positions can be verified with the character tables provided above using either the
inner product or by adding up character values on each conjugacy class.

Group V: Constituents of £ x & x o, where £ is a non-trivial quadratic character.

EXExo=¢EStare) X o+ &l X o

= { Stare) X §o + & lare) % &o.

Each of the four representations on the right side is reducible and has two con-

stituents as shown in the following table.
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Table 4.17: Group V constituents

§Star(e) @ o

§lgr(z) X &o

fStGL(g) X o

aInd(Ql)

olnd(®y),

EloLy X o

olnd(®g),

olnd(63)

Group VI*: Constituents of 1px X 1px X 0.

1IF>< X 1IE‘>< N o= StGL(g) X o+ 1GL(2) X o

Each of the four representations on the right is reducible and has three irreducible
constituents as shown in the following table. The common factor oInd(6y), occurs as

a constituent of each of the four representations Stqr,2) ¥ 0, lawe) X o, 1F; X oStasp(2),

and 1]17; X 01GSp(2)'

= 1]17; X O'St(;sp(g) + 1F;< X UlGSp(Z)-

Table 4.18: Group VI* constituents

Star) X o (common factor) lare) @ o
1qu X 0Stasp(2) oStasp(a) olnd(fy), olnd(6011),
(common factor) olnd(6y), — olnd(6y),

115‘; X O'].GSp(Q) UIIld(Qm)a O'IIld(@g)a UlGSp(4)




4.3 Irreducible non—supercuspidal representations

For comparison purposes, we now summarize some results of Sally and Tadi¢ in [12]
on the irreducible admissible non—supercuspidal representations of GSp(4, F'), where
F'is a non—archimedean local field of characteristic 0.

The following table from [II] lists all such representations. As in our previous
non—cuspidal table, representations in the same group I — XI are constituents of the
same induced representation. The “g” column indicates the generic representations.

Representations in groups I — VI are constituents of representations induced from
a character of the Borel subgroup B(F'). Representations in groups VII — IX are
supported in @, and representations in groups X and XI are supported in P. Let 7

be a supercuspidal representation of GL(2, F') with central character w;.

Table 4.19: Irreducible non-supercuspidal representations

Constituent of Representation g

[ X1 X X2 X o (irreducible) °
I a| V2 xv Y2y xo XStare) X o .

b | (x* # v, x # v=3?) XloLe) X o
I a X Xvxv g X X 0Stasp(2) °

b (x ¢ {1,v%}) X X olasp(a)

a oStasp(a) °
v b V2 xvxv g L7, v oStasp)

c L(v32Star ), v 3%0)

d olasp)
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Table 4.19 — Continued

Constituent of Representation g
a 5([¢, ve], v~ 20) o
v | P X v | L% ¢Stare), v %0)
c (=1,¢6#1) L(v'%¢Star ), Ev120)
d L(v€, € xv=120)
a 7(S,v12%0) o
VI b vX 1px x v~ Y% (v o)
c L(v'?Stay ), v~ %0)
d L(v, 1px x v~1/%g)
VII x X7 (irreducible) o
v | P (5, 7) *
b (T, )
x |8 vE x v 12 §(v€, v=1%7) .
b| (€41 em=m) L(ve, v 2r)
X m X o (irreducible) o
<1 | ® V27 x v 20 S 2m, v=20) 3
b (wr =1) L, v=1%0)

The induced representation y; X x2 X o is irreducible if and only if x; # v, xo # v,

and x1 # VG
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4.3.1 Decompositions for types IV, V, and VI

3/2

Group IV: Constituents of 1% x v x v=3/2¢.

VP xuxr e = V3/QStGL(2) v 30+ 1/3/21GL(2) X v g
sub quot

=12 x V’laSthp(g) + V% X lflUlGSp(z) .

. o

-~ -~

sub quot

Each of the four representations on the right is reducible and has two irreducible
constituents as shown in the following table. The quotients are on the bottom, re-

spectively on the right.

Table 4.20: Group IV constituents

P 2Stap ) 3 20 | g 0

% % Vﬁlastgsp(g) UStGSp(4) L(VZa VﬁlO’Sthp(Q))

v 3l olaspe) || L(v¥*Star), v %0) o lasp()

1/2

Group V: Constituents of v€ x & x v~/?0, where £ is a non-trivial quadratic

character.

I/f X f X V71/20' = V1/2£ StGL(g) X V71/20'—|— 1/1/25 1GL(2) b Vﬁl/QO'

Vv Vv
sub quot

= 1/1/25 Star(z) X fl/_l/20' + V1/2§ Lar(2) X fy_l/Qa.

sub quot
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Each of the representations on the right side has two constituents as indicated in

the following table. The quotients appear on the bottom, respectively on the right.

Table 4.21: Group V constituents

vi/2¢ Stare) v 120 vi/2¢ laL) X v 120

V1/2€ Star) @ v 20 §([¢, vE], v 20) L(v'%¢ Star ), v™12%0)
V1/2§ 1GL(2) x v~12g L(V1/2§ StGL(Q),ﬁV_l/ZU) L(Vfaf X V_l/QU)

1/2

Group VI: Constituents of v X 1px X v™/*0.

1/2 1/2

Vv X 1F>< XNy o= V1/2 StGL(Z) X V_1/20+V1/2 1GL(2) Xv o
N Vv - N TV 4
sub quot

=1px O'Stgsp(gl‘i_}FX X 0lagsp(2) -

-~ -~

sub quot

Each of the representations on the right side is again reducible, having two con-
stituents as indicated in the following table. The quotients appearing on the bottom,

respectively on the right.

Table 4.22: Group VI constituents

1/1/2 StGL(g) X I/_l/20' 1/1/2 1GL(2) A Z/_1/20'

Lpx X 0Stasp(@) (S, v1%0) (T, v="20)

Lpx X 0lgsp(2) L(v'/? StaL@)s v 120) | L(v, 1px x v=120)
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4.4 Subspaces of admissible non—supercuspidal rep-
resentations

Consider the group GSp(4, F'), where F' is a non—archimedean local field of character-
istic zero. Denote its ring of integers by o and let p be its maximal ideal. Consider only
those fields F' such that o/p is isomorphic to the finite field F, so that GSp(4, 0/p) =
GSp(4, ;). Fix a generator w of p. If x is in F*, then define v(z) to be the unique in-
teger such that z = uw”® for some unit u in 0*. Write v/(z) or |z| for the normalized
absolute value of z; thus v(w) = ¢!

Recall that a representation (7, V') of a group G is called smooth if every vector
in V is fixed by an open-compact subgroup K of G and (m, V) is called admissible if
the spaces V& of fixed vectors under the action of an open-compact subgroup K are

finite dimensional for any open compact subgroup K.

The congruence subgroup of level p™ of GSp(4, F'), denoted by I'(p™), is defined by
I'(p") = {9 € GSp(4, F) : g = I (mod p")}

where [ is the 4 x 4 identity matrix.

We have the following short exact sequence
1 — I'(p) — GSp(4,0) — GSp(4,0/p) — 1

for the maximal compact subgroup K = GSp(4,0) of GSp(4, F).

Let (m, V) be an admissible representation of GSp(4, F'). K acts on the space
VT®) . By definition ['(p) acts trivially in this space so there is an action of the group
GSp(4,IFy) = GSp(4,0/p) = K/I'(p).
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For an admissible non—supercuspidal representation of GSp(4, F'), the dimensions
of the spaces VI'® can be determined by looking at their finite group analogues. For
example, consider the irreducible non—supercuspidal representation y; X yo X o given

in [I2]. The standard model for this representation is the space of smooth functions

f:GSp4,F) — C

satisfying

a * *
it T 9= el @) (9),
ca™!

with group action by right translation and each such f fixed by some open-compact
subgroup of GSp(4, F). x1, x2, and o are characters of the multiplicative group of the
field F, i.e., x1,x2,0 : F* — C*. Let us assume that these characters are trivial
on 1+ p. We restrict these characters to 0™ to get characters on the multiplicative

group of the finite field Iy, i.e.,

Xi = Xilox, 0 := 0lox : F) = (0/p)" = 0*/(1+p) — C*.

The subspace of this representation VI®) of vectors fixed under the action of the

congruence subgroup I'(p)

VE® = {f: f(gk) = f(g)forallk € T'(p)}

is isomorphic to the space VI® of functions f : K — C satisfying the above

property. These functions are then functions f : K/I'(p) — C, hence functions
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f: GSp(4,0/p) — C. So f can be considered to be a function on the finite group
GSp(4,F,) satisfying

a *x * *
it T 9= xa@nmsef)
ca?
So
(x1 X x2 X 0)T® 22y, x ¥y x 6.

Thus the dimension of (y; x x2 % 0)'® is (¢% + 1)(q + 1)

The non—supercuspidal representations obtained from parabolic induction on the
Siegel and Klingen parabolic groups also descend to non—cuspidal representations in
the finite group case under appropriate assumptions on the characters ¢ and x and
the GL(2) representation m, i.e., 0 and x are trivial on 1 + p, and 7 has non-zero
I'(p)-fixed vectors for the principal congruence subgroup I'(p) of GL(2, F').

The following table gives the dimensions of I'(p)-fixed vectors in the non-super-
cuspidal characters supported in the Borel, the Siegel parabolic, or the Klingen
parabolic subgroup. The “GSp(4,F,)” column indicates the finite representations

producing the dimensions given.

Table 4.23: Dimensions of I'(p)—fixed vectors

Representation Dimension GSp(4,F,)

| X1 X X2 X o (irreducible) | (¢* +1)(q + 1)? X1 X X2 X O
—_ XStaLe) X o q(@+1)(¢g+1) XStgLe) X o
b Xlan@) o (> +1)(g+1) xlare) X o
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Table 4.23 — Continued

Representation Dimension GSp(4,F,)
o |2 X X oStasp(2) 9(®+1)(g+1) X X 0Stasp(2)
b X X olgsp(2) (@ +1)(g+1) X X olgsp(2)
a oStasp() q* oStasp()
v b L(v?, v 'oStasp(2)) q@+q+1) olnd (), + oInd(0y1),
c L(V3/QStGL(2), v=32¢q) @ +q+1) colnd(fy), + olnd(612),
d olasp(a) 1 olasp(4)
a 5([¢, ve], v=120) Pl +1) olnd(6;)
v b | L'Y2€Stare),v %0) | q(®+1) olnd(®y),
¢ | L('Y%Stare),év?0) | q(¢®+1) olnd(®y),
d L(v€, € xv™120) ¢ +1 olnd(6s)
a (S, v~ 20) q* + 3q(qg+1)* | oStasp) + olnd(y),
- b (T, v=%0) tq(¢* +1) olnd(011),
c L(vY?Stay ), v %0) sq(q* +1) oInd(012)a
d L(v,1px x v=120) 1+ 2q(q+ 1) olasp(e) + oInd(by),
VII x X 7 (irreducible) ¢t —1 XX T
—k (S, ) a(¢* +1)(g—1) Ind(w,®3)
b (T, ) (@?+1)(g—1) Ind(w, ;)
x |8 S(w&, 1) *(¢* = 1) Ind(§wnbs)
b L(vé, v=1%7) ¢ -1 Ind(éw,07)
X 7 x o (irreducible) ¢t -1 TXOo
o o] a0 Pr o) @t D@-D|  old(u(),
b L(v'Pr, v 0) (> +1)(g—1) alnd(xs(1))a

The dimensions in the table can be verified by comparing the decompositions of each
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type to the finite group decompositions of the corresponding type. Note that we may
assume that ¢ = 1 since the space of fixed vectors doesn’t change under twisting
with characters trivial on 1+ p. Indeed, let m be a representation of GSp(4, F'), o a
character of F* which is trivial on 1+ p, and v a I'(p)—fixed vector. Then, for all

g € T'(p), we have

The type VI representations require some additional information to compute di-
mensions using Table The issue is where to place the common factor olnd(6),.
It is important to note that VId has a three-dimensional subspace of Iwahori subgroup—
fixed vectors so the dimension of its space of I'(p)-fixed vectors is at least three—

dimensional. Comparing with Table completes the argument for the dimensions.
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